Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376585

RESUMO

Lumpy skin disease virus (LSDV) is a vector-transmitted capripox virus that causes disease in cattle. Stomoxys calcitrans flies are considered to be important vectors as they are able to transmit viruses from cattle with the typical LSDV skin nodules to naive cattle. No conclusive data are, however, available concerning the role of subclinically or preclinically infected cattle in virus transmission. Therefore, an in vivo transmission study with 13 donors, experimentally inoculated with LSDV, and 13 naïve acceptor bulls was performed whereby S. calcitrans flies were fed on either subclinical- or preclinical-infected donor animals. Transmission of LSDV from subclinical donors showing proof of productive virus replication but without formation of skin nodules was demonstrated in two out of five acceptor animals, while no transmission was seen from preclinical donors that developed nodules after Stomoxys calcitrans flies had fed. Interestingly, one of the acceptor animals which became infected developed a subclinical form of the disease. Our results show that subclinical animals can contribute to virus transmission. Therefore, stamping out only clinically diseased LSDV-infected cattle could be insufficient to completely halt the spread and control of the disease.


Assuntos
Capripoxvirus , Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Muscidae , Bovinos , Animais , Masculino , Insetos Vetores
2.
Viruses ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37112850

RESUMO

The current epidemic in Asia, driven by LSDV recombinants, poses difficulties to existing DIVA PCR tests, as these do not differentiate between homologous vaccine strains and the recombinant strains. We, therefore, developed and validated a new duplex real-time PCR capable of differentiating Neethling-based vaccine strains from classical and recombinant wild-type strains that are currently circulating in Asia. The DIVA potential of this new assay, seen in the in silico evaluation, was confirmed on samples from LSDV infected and vaccinated animals and on isolates of LSDV recombinants (n = 12), vaccine (n = 5), and classic wild-type strains (n = 6). No cross-reactivity or a-specificity with other capripox viruses was observed under field conditions in non-capripox viral stocks and negative animals. The high analytical sensitivity is translated into a high diagnostic specificity as more than 70 samples were all correctly detected with Ct values very similar to those of a published first-line pan capripox real-time PCR. Finally, the low inter- and intra-run variability observed shows that the new DIVA PCR is very robust which facilitates its implementation in the lab. All validation parameters that are mentioned above indicate the potential of the newly developed test as a promising diagnostic tool which could help to control the current LSDV epidemic in Asia.


Assuntos
Capripoxvirus , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Vacinas Virais , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Reação em Cadeia da Polimerase em Tempo Real , Doença Nodular Cutânea/diagnóstico , Doença Nodular Cutânea/prevenção & controle , Vacinas Virais/genética , Vacinas Atenuadas , Capripoxvirus/genética
3.
Microorganisms ; 11(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677502

RESUMO

Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.

4.
Viruses ; 14(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35891412

RESUMO

From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Vacinas Virais , Animais , Ásia/epidemiologia , Bovinos , Vacinas Atenuadas , Vacinas Virais/genética
5.
Pathogens ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745551

RESUMO

From 1975 to 2021, the United Arab Emirates (UAE) imported more than 1300 live Arabian oryxes (AOs) and scimitar-horned oryxes (SHOs) for conservation programs. The objective of this study was to estimate the prevalence of orbiviruses Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in AOs and SHOs from captive herds in the UAE. Between October 2014 and April 2015, 16 AOs and 13 SHOs originating from Texas (USA) and 195 out of about 4000 SHOs from two locations in the UAE were blood sampled to be tested by indirect enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays. Eight imported AOs (50% CI [24.7-75.4%]) and eight imported SHOs (61.5% CI [31.6-86.1%]) were found BTV seropositive, in contrast with three out of 195 SHOs (1.5% CI [0.3-4.4%]) from the Emirates. BTV-2 genome was detected in 6/16 of the Arabian Oryx, and amongst those, one out of six was seronegative. None of the tested samples was found positive for EHDV. Our results illustrate the wide local variation regarding BTV seroprevalence in domestic and wild ruminants in the Arabian Peninsula. These results stress the need for pre-import risk assessment when considering translocation of wild ruminant species susceptible to orbiviruses not only in the country of destination but also where transit happens.

6.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632817

RESUMO

Burundi is a small, densely populated country in the African Great Lakes region. In March 2016, several hundreds of cattle were reported with vesicular lesions, suggesting foot-and-mouth disease (FMD). Epithelial samples, saliva, and blood were collected in six of the affected provinces spread over the country. The overall seroprevalence of FMD virus (FMDV) in the affected herds, as determined by antibodies against FMDV non-structural proteins, was estimated at 87%. Antibodies against FMDV serotypes O (52%), A (44%), C (19%), SAT1 (36%), SAT2 (58%), and SAT3 (23%) were detected across the provinces. FMDV genome was detected in samples from five of the six provinces using rRT-PCR. FMDV was isolated from samples from three provinces: in Cibitoke province, serotypes A and SAT2 were isolated, while in Mwaro and Rutana provinces, only serotype SAT2 was isolated. In Bururi and Cankuzo provinces, the serological profile suggested a recent incursion with serotype SAT2, while in Bubanza province, the serological profile suggested past incursions with serotype O and possibly serotype SAT1. The phylogenetic assessments showed the presence of topotypes A/Africa/G-I and SAT2/IV, similarly to previously characterized virus strains from other countries in the region, suggesting a transboundary origin and necessitating a regional approach for vaccination and control of FMD.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , África Oriental/epidemiologia , Animais , Burundi/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Filogenia , Estudos Soroepidemiológicos , Sorogrupo
7.
Microbiol Resour Announc ; 10(48): e0089721, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854705

RESUMO

Lumpy skin disease virus (LSDV) causes a severe, systemic, and economically important disease in cattle. Here, we report coding-complete sequences of recombinant LSDVs from four outbreaks in October and November 2020 in northeastern Vietnam.

8.
Microorganisms ; 9(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34683492

RESUMO

Lumpy skin disease (LSD) diagnosis is primarily based on clinical surveillance complemented by PCR of lesion crusts or nodule biopsies. Since LSD can be subclinical, the sensitivity of clinical surveillance could be lower than expected. Furthermore, real-time PCR for the detection of LSD viral DNA in blood samples from subclinical animals is only intermittently positive. Therefore, this study aimed to investigate an acceptable, easily applicable and more sensitive testing method for the detection of clinical and subclinical LSD. An animal experiment was conducted to investigate ear notches and biopsies from unaffected skin taken from the neck and dorsal back as alternatives to blood samples. It was concluded that for early LSD confirmation, normal skin biopsies and ear notches are less fit for purpose, as LSDV DNA is only detectable in these samples several days after it is detectable in blood samples. On the other hand, blood samples are less advisable for the detection of subclinical animals, while ear notches and biopsies were positive for LSD viral DNA in all subclinically infected animals by 16 days post infection. In conclusion, ear notches could be used for surveillance to detect subclinical animals after removing the clinical animals from a herd, to regain trade by substantiating the freedom of disease or to support research on LSDV transmission from subclinical animals.

9.
Vaccines (Basel) ; 9(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34579256

RESUMO

Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance of a quality procedure via the evaluation of the LSD vaccine, Lumpivax (Kevevapi). The initial PCR screening revealed the presence of wild type LSD virus (LSDV) and goatpox virus (GTPV), in addition to vaccine LSDV. New phylogenetic PCRs were developed to characterize in detail the genomic content and a vaccination/challenge trial was conducted to evaluate the impact on efficacy and diagnostics. The characterization confirmed the presence of LSDV wild-, vaccine- and GTPV-like sequences in the vaccine vial and also in samples taken from the vaccinated animals. The analysis was also suggestive for the presence of GTPV-LSDV (vaccine/wild) recombinants. In addition, the LSDV status of some of the animal samples was greatly influenced by the differentiating real-PCR used and could result in misinterpretation. Although the vaccine was clinically protective, the viral genomic content of the vaccine (being it multiple Capripox viruses and/or recombinants) and the impact on the diagnostics casts serious doubts of its use in the field.

10.
Microorganisms ; 9(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204157

RESUMO

Lumpy skin disease (LSD) is an important animal disease with significant health and economic impacts. It is considered a notifiable disease by the OIE. Attenuated strains of LSDV have been successfully used as vaccines (LAV) but can also produce mild or systemic reactions. Vaccination campaigns using LAVs are therefore only viable if accompanying DIVA assays are available. Two DIVA qPCR assays able to distinguish Neethling-based LAVs and wild-type LSDV were developed. Upon validation, both assays were shown to have high sensitivity and specificity with a diagnostic performance comparable to other published DIVA assays. This confirmed their potential as reliable tools to confirm infection in animals during vaccination campaigns based on Neethling vaccine strains.

11.
Vaccines (Basel) ; 9(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066658

RESUMO

Vaccines form the cornerstone of any control, eradication and preventative strategy and this is no different for lumpy skin disease. However, the usefulness of a vaccine is determined by a multiplicity of factors which include stability, efficiency, safety and ease of use, to name a few. Although the vaccination campaign in the Balkans against lumpy skin disease virus (LSDV) was successful and has been implemented with success in the past in other countries, data of vaccine failure have also been reported. It was therefore the purpose of this study to compare five homologous live attenuated LSDV vaccines (LSDV LAV) in a standardized setting. All five LSDV LAVs studied were able to protect against a challenge with virulent LSDV. Aside from small differences in serological responses, important differences were seen in side effects such as a local reaction and a Neethling response upon vaccination between the analyzed vaccines. These observations can have important implications in the applicability in the field for some of these LSDV LAVs.

12.
Microbiol Resour Announc ; 10(14)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833026

RESUMO

Bluetongue is one of the major diseases of ruminants listed by the World Organisation for Animal Health. Bluetongue virus serotype 8 (BTV-8) has been considered enzootic in France since 2018. Here, we report the nearly complete genome sequences of two BTV-8 isolates from the 2020 outbreak in the Grand Duchy of Luxembourg.

13.
Viruses ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918924

RESUMO

Transmission of bluetongue (BT) virus serotype 8 (BTV-8) via artificial insemination of contaminated frozen semen from naturally infected bulls was investigated in two independent experiments. Healthy, BT negative heifers were hormonally synchronized and artificially inseminated at oestrus. In total, six groups of three heifers received semen from four batches derived from three bulls naturally infected with BTV-8. Each experiment included one control heifer that was not inseminated and that remained BT negative throughout. BTV viraemia and seroconversion were determined in 8 out of 18 inseminated heifers, and BTV was isolated from five of these animals. These eight heifers only displayed mild clinical signs of BT, if any at all, but six of them experienced pregnancy loss between weeks four and eight of gestation, and five of them became BT PCR and antibody positive. The other two infected heifers gave birth at term to two healthy and BT negative calves. The BT viral load varied among the semen batches used and this had a significant impact on the infection rate, the time of onset of viraemia post artificial insemination, and the gestational stage at which pregnancy loss occurred. These results, which confirm unusual features of BTV-8 infection, should not be extrapolated to infection with other BTV strains without thorough evaluation. This study also adds weight to the hypothesis that the re-emergence of BTV-8 in France in 2015 may be attributable to the use of contaminated bovine semen.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/transmissão , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Inseminação Artificial/veterinária , Preservação do Sêmen/veterinária , Sêmen/virologia , Aborto Animal/virologia , Animais , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/imunologia , Vírus Bluetongue/isolamento & purificação , Bovinos , Feminino , França , Inseminação Artificial/efeitos adversos , Masculino , Gravidez , Preservação do Sêmen/efeitos adversos , Sorogrupo
14.
Microbiol Resour Announc ; 9(43)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093046

RESUMO

Lumpy skin disease (LSD) is an emerging cattle disease with serious economic consequences. We report the complete coding sequence of LSD virus 210LSD-249/BUL/16, detected in a blood sample from a diseased cow during an outbreak in Bulgaria (Kabile Village, Yambol Region) in June 2016.

15.
Prev Vet Med ; 181: 104704, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31196699

RESUMO

Capripox viruses are the causative agents of important animal diseases in cattle (Lumpy Skin Disease), sheep (Sheeppox) and goats (Goatpox) with severe socio-economic impact in case of wide scale outbreaks. Therefore there is a constant need for adequate diagnostic tools. The assays must be fit-for-purpose to identify the virus quickly and correctly and to be useful for surveillance and monitoring at different stages of an epidemic. Different diagnostic performance characteristics are required depending on the situation and the test purpose. The need for high throughput, high specificity/sensitivity and the capability for differentiating field virus strains from vaccine strains drives the development of new and better assays preferably with an advantageous cost-benefit balance. This review aims to look at existing and new virological and serological diagnostic tools used in the control against diseases caused by Capripox viruses.


Assuntos
Capripoxvirus/isolamento & purificação , Doenças das Cabras/diagnóstico , Doença Nodular Cutânea/diagnóstico , Infecções por Poxviridae/veterinária , Testes Sorológicos/veterinária , Doenças dos Ovinos/diagnóstico , Animais , Bovinos , Doenças das Cabras/virologia , Cabras , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/virologia , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/virologia , Carneiro Doméstico
16.
J Virol Methods ; 277: 113800, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837373

RESUMO

During this study a new Immunoperoxidase Monolayer Assay (IPMA) was developed for the detection of antibodies against lumpy skin disease virus (LSDV) in an easy and low tech setting. Using two dilutions (1:50 and 1:300) in a duplicate format, the test was shown to be highly sensitive, specific and repeatable. In comparison to the VNT and a commercial ELISA, the LSDV-IPMA was able to detect the LSDV antibodies earlier in infected, vaccinated and vaccinated/infected animals. The assay is very flexible as it can be easily adapted for the detection of sheeppox or goatpox antibodies and it can be scaled-up to handle medium size sample sets by preparing the IPMA plates in advance. These plates are safe and can be handled in low biosafety level labs.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Técnicas Imunoenzimáticas/métodos , Doença Nodular Cutânea/diagnóstico , Doença Nodular Cutânea/imunologia , Vírus da Doença Nodular Cutânea/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Doenças das Cabras/diagnóstico , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia
17.
Front Vet Sci ; 6: 432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867345

RESUMO

The behavior of BTV-8 in cattle is different from most other serotypes not only with regards to clinical signs but certainly with respect to virus transmission (transplacental, contact). Therefore, the possibility of virus transmission by means of embryo transfer was examined by in vitro exposure of in vitro produced and in vivo derived bovine blastocysts to BTV-8 followed by different washing protocols, including longer exposure times (up to 120 s) to 0.25% trypsin at room temperature or at 37°C. None of the washing protocols used was successful in removing the viral genome completely from the in vitro produced and in vivo derived embryos as was demonstrated by real-time PCR. Moreover, BTV-8 virus was transmitted to recipient cows after embryo transfer of in vivo derived BTV8-exposed embryos, which had been subjected to routine decontamination as recommended by IETS, consisting of 5 washes in PBS followed by a double treatment of 0.25% trypsin for 45s at 37°C, and an additional 5 washes in PBS with 2% FCS. This study clearly demonstrates the necessity of vigorous application of the directives for screening of potential donors and the collected embryos, especially in regions with BTV-8, to prevent transmission of the disease.

18.
Transbound Emerg Dis ; 66(1): 400-411, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30281942

RESUMO

Bluetongue (BT) is a ruminant viral infectious disease transmitted by Culicoides spp. midges. In 2006, when bluetongue virus serotype 8 (BTV-8) appeared for the first time in Northern Europe, it rapidly spread and infected a large proportion of animals. BThas a significant economic impact due to a direct effect on animal health and to an indirect effect in disrupting international trade of animals and animal products. In spring 2008, a compulsory subsidized vaccination programme in Europe resulted in a drastic decrease in the number of reported cases. However, due to the turn-over of the population, without a continuous vaccination programme, the animal population was becoming progressively susceptible. Vaccination would enable Belgium to maintain its status of freedom from infection of BTV-8 that could possibly be re-introduced. Subsidizing it could be an incentive to convince more farmers to vaccinate. To finance this programme, both decision-makers and stakeholders need to be persuaded by the effectiveness and the cost-benefit of vaccination. The study evaluated the effectiveness of vaccination against BTV-8 in Belgium. The change in serology which has shown the effectiveness of the vaccine to induce antibody production has been significantly associated with the time between the first injection and the sampling date and the number of injections of the primo-vaccination. This study also clearly confirms the benefit of vaccination by reducing economic impact of treatment and production losses, especially in dairy cattle. Based on a participating epidemiological approach, a national voluntary and subsidized vaccination was accepted, and permitted Belgium to vaccinate more than 9,000 herds in 1 month. Because this mass vaccination occurred before the vector season, it probably helped Belgium remain free from BTV-8.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/economia , Bluetongue/prevenção & controle , Custo Compartilhado de Seguro/economia , Análise Custo-Benefício/economia , Vacinação/economia , Vacinas Virais/administração & dosagem , Animais , Bélgica/epidemiologia , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Ceratopogonidae/virologia , Vacinação em Massa , Ruminantes , Estações do Ano , Sorogrupo , Ovinos , Vacinação/veterinária
19.
Vet Res ; 49(1): 63, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012223

RESUMO

Bluetongue disease is caused by bluetongue virus (BTV) and BTV serotype 8 (BTV8) caused great economic damage in Europe during the last decade. From 1998 to 2007, in addition to BTV8, Europe had to face the emergence of BTV1, 2, 4, 9, and 16, spreading in countries where the virus has never been detected before. These unprecedented outbreaks trigger the need to evaluate and compare the clinical, virological and serological features of the European BTV serotypes in the local epidemiological context. In this study groups of calves were infected with one of the following European BTV serotypes, namely BTV1, 2, 4, 9 and 16. For each tested serotype, two groups of three male Holstein calves were used: one group vaccinated against BTV8, the other non-vaccinated. Clinical signs were quantified, viral RNA was detected in blood and organs and serological relationship was assessed. Calves were euthanized 35 days post-infection and necropsied. Most of the infected animals showed mild clinical signs. A partial serological cross reactivity has been reported between BTV8 and BTV4, and between BTV1 and BTV8. BTV2 and BTV4 viral RNA only reached low levels in blood, when compared to other serotypes, whereas in vitro growth assays could not highlight significant differences. Altogether the results of this study support the hypothesis of higher adaptation of some BTV strains to specific hosts, in this case calves. Furthermore, cross-protection resulting from a prior vaccination with BTV8 was highlighted based on cross-neutralization. However, the development of neutralizing antibodies is probably not totally explaining the mild protection induced by the heterologous vaccination.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Doenças dos Bovinos/prevenção & controle , Proteção Cruzada/imunologia , Vacinas Virais/imunologia , Animais , Bluetongue/imunologia , Vírus Bluetongue/genética , Bovinos , Doenças dos Bovinos/imunologia , Masculino , Sorogrupo , Vacinas de Produtos Inativados/imunologia
20.
J Virol Methods ; 249: 48-57, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28837841

RESUMO

Lumpy skin disease (LSD) is a transboundary viral disease of cattle with severe economic impact. Immunization of cattle with homologous live attenuated vaccines poses a number of diagnostic problems, as it has been associated with adverse reactions resembling disease symptoms. The latter hampers clinical diagnosis and poses challenges in virus identification. To this end, a duplex quantitative real-time PCR method targeting the GPCR gene was developed and validated, for the concurrent detection and differentiation of wild type and vaccine Lumpy skin disease virus (LSDV) strains. The method was evaluated in three laboratories. The evaluation included a panel of 38 poxvirus isolates/strains and the analytical characteristics of the method were determined. Amplification efficiencies were 91.3% and 90.7%, for wild type and vaccine LSDV, respectively; the limit of detection was 8 DNA copies for both targets and the inter-assay CV was 0.30% for wild type and 0.73% for vaccine LSDV. The diagnostic performance was assessed using 163 LSDV-positive samples, including field specimens and samples from experimentally vaccinated/infected animals. The method is able to confirm diagnosis in suspect cases, it differentiates infected from vaccinated animals (DIVA) and can be regarded as an important tool for effective LSD surveillance and eradication during vaccination campaigns.


Assuntos
Sondas de DNA , Doença Nodular Cutânea/diagnóstico , Vírus da Doença Nodular Cutânea/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vacinas Virais , Animais , Bovinos , DNA Viral/genética , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/genética , Sensibilidade e Especificidade , Vacinas Atenuadas , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...