Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 959, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735539

RESUMO

N-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.


Assuntos
Endocanabinoides , PPAR alfa , Animais , Camundongos , Azeite de Oliva/farmacologia , Obesidade/etiologia , Obesidade/prevenção & controle , Peso Corporal
2.
Sci Adv ; 9(28): eadh1403, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450585

RESUMO

Intensive physical activity improves motor functions in patients with Parkinson's disease (PD) at early stages. However, the mechanisms underlying the beneficial effects of exercise on PD-associated neuronal alterations have not been fully clarified yet. Here, we tested the hypothesis that an intensive treadmill training program rescues alterations in striatal plasticity and early motor and cognitive deficits in rats receiving an intrastriatal injection of alpha-synuclein (α-syn) preformed fibrils. Improved motor control and visuospatial learning in active animals were associated with a recovery of dendritic spine density alterations and a lasting rescue of a physiological corticostriatal long-term potentiation (LTP). Pharmacological analyses of LTP show that modulations of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, the main brain-derived neurotrophic factor receptor, are involved in these beneficial effects. We demonstrate that intensive exercise training has effects on the early plastic alterations induced by α-syn aggregates and reduces the spread of toxic α-syn species to other vulnerable brain areas.


Assuntos
Doença de Parkinson , Ratos , Animais , Doença de Parkinson/terapia , Plasticidade Neuronal/fisiologia , Corpo Estriado , Potenciação de Longa Duração/fisiologia , Cognição
3.
NPJ Parkinsons Dis ; 9(1): 92, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328503

RESUMO

Cognitive deficits, including working memory, and visuospatial deficits are common and debilitating in Parkinson's disease. α-synucleinopathy in the hippocampus and cortex is considered as the major risk factor. However, little is known about the progression and specific synaptic mechanisms underlying the memory deficits induced by α-synucleinopathy. Here, we tested the hypothesis that pathologic α-Synuclein (α-Syn), initiated in different brain regions, leads to distinct onset and progression of the pathology. We report that overexpression of human α-Syn in the murine mesencephalon leads to late onset memory impairment and sensorimotor deficits accompanied by reduced dopamine D1 expression in the hippocampus. In contrast, human α-Syn overexpression in the hippocampus leads to early memory impairment, altered synaptic transmission and plasticity, and decreased expression of GluA1 AMPA-type glutamate receptors. These findings identify the synaptic mechanisms leading to memory impairment induced by hippocampal α-synucleinopathy and provide functional evidence of the major neuronal networks involved in disease progression.

4.
Cell Rep ; 42(2): 112104, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787220

RESUMO

Microglia reactivity entails a large-scale remodeling of cellular geometry, but the behavior of the microtubule cytoskeleton during these changes remains unexplored. Here we show that activated microglia provide an example of microtubule reorganization from a non-centrosomal array of parallel and stable microtubules to a radial array of more dynamic microtubules. While in the homeostatic state, microglia nucleate microtubules at Golgi outposts, and activating signaling induces recruitment of nucleating material nearby the centrosome, a process inhibited by microtubule stabilization. Our results demonstrate that a hallmark of microglia reactivity is a striking remodeling of the microtubule cytoskeleton and suggest that while pericentrosomal microtubule nucleation may serve as a distinct marker of microglia activation, inhibition of microtubule dynamics may provide a different strategy to reduce microglia reactivity in inflammatory disease.


Assuntos
Microglia , Microtúbulos , Centrossomo , Citoesqueleto , Complexo de Golgi , Tubulina (Proteína)
5.
iScience ; 26(1): 105891, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36647387

RESUMO

Here, we describe a conserved motor neuron-specific long non-coding RNA, Lhx1os, whose knockout in mice produces motor impairment and postnatal reduction of mature motor neurons (MNs). The ER stress-response pathway result specifically altered with the downregulation of factors involved in the unfolded protein response (UPR). Lhx1os was found to bind the ER-associated PDIA3 disulfide isomerase and to affect the expression of the same set of genes controlled by this protein, indicating that the two factors act in conjunction to modulate the UPR. Altogether, the observed phenotype and function of Lhx1os indicate its important role in the control of MN homeostasis and function.

6.
EMBO Mol Med ; 14(11): e15941, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36194668

RESUMO

Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.


Assuntos
MicroRNAs , Retinose Pigmentar , Humanos , Regulação para Baixo , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Mutação , MicroRNAs/genética , MicroRNAs/metabolismo
8.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35929194

RESUMO

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Lipofuscinoses Ceroides Neuronais , Animais , Pré-Escolar , Humanos , Lisossomos/metabolismo , Camundongos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Qualidade de Vida
9.
Traffic ; 23(5): 238-269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343629

RESUMO

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Assuntos
Lisossomos , Redes e Vias Metabólicas , Lisossomos/metabolismo , Transdução de Sinais
10.
Exp Neurol ; 353: 114056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358499

RESUMO

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder, mainly caused by mutations in the MECP2 gene. Reduction in monoamine levels in RTT patients and mouse models suggested the possibility to rescue clinical phenotypes through antidepressants. Accordingly, we tested mirtazapine (MTZ), a noradrenergic and specific-serotonergic tetracyclic antidepressant (NaSSA). In previous studies, we showed high tolerability and significant positive effects of MTZ in male Mecp21m1.1Bird-knock-out mice, adult female Mecp2tm1.1Bird-heterozygous (Mecp2+/-) mice, and adult female RTT patients. However, it remained to explore MTZ efficacy in female Mecp2+/- mice at young ages. As RTT-like phenotypes in young Mecp2+/- mice have been less investigated, we carried out a behavioural characterization to analyze Mecp2+/- mice in "early adolescence" (6 weeks) and "young adulthood" (11 weeks) and identified several progressive phenotypes. Then, we evaluated the effects of either a 15- or a 30-day MTZ treatment on body weight and impaired motor behaviours in 11-week-old Mecp2+/- mice. Finally, since defective cortical development is a hallmark of RTT, we performed a histological study on the maturation of perineuronal nets (PNNs) and parvalbuminergic (PV) neurons in the primary motor cortex. The 30-day MTZ treatment was more effective than the shorter 15-day treatment, leading to the significant rescue of body weight, hindlimb clasping and motor learning in the accelerating rotarod test. Behavioural improvement was associated with normalized PV immunoreactivity levels and PNN thickness. These results support the use of MTZ as a new potential treatment for adolescent girls affected by RTT and suggest a possible mechanism of action.


Assuntos
Síndrome de Rett , Adolescente , Adulto , Animais , Antidepressivos/uso terapêutico , Peso Corporal , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Mirtazapina/uso terapêutico , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Adulto Jovem
11.
Mol Ther ; 30(4): 1432-1450, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121108

RESUMO

Mucopolysaccharidosis type IIIA (MPS-IIIA) is an autosomal recessive disorder caused by mutations in SGSH involved in the degradation of heparan sulfate. MPS-IIIA presents severe neurological symptoms such as progressive developmental delay and cognitive decline, for which there is currently no treatment. Brain targeting represents the main challenge for therapeutics to treat MPS-IIIA, and the development of small-molecule-based treatments able to reach the CNS could be a relevant advance for therapy. Using cell-based high content imaging to survey clinically approved drugs in MPS-IIIA cells, we identified fluoxetine, a selective serotonin reuptake inhibitor. Fluoxetine increases lysosomal and autophagic functions via TFEB activation through a RagC-dependent mechanism. Mechanistically, fluoxetine increases lysosomal exocytosis in mouse embryonic fibroblasts from MPS-IIIA mice, suggesting that this process may be responsible for heparan sulfate clearance. In vivo, fluoxetine ameliorates somatic and brain pathology in a mouse model of MPS-IIIA by decreasing the accumulation of glycosaminoglycans and aggregated autophagic substrates, reducing inflammation, and slowing down cognitive deterioration. We repurposed fluoxetine for potential therapeutics to treat human MPS-IIIA disease.


Assuntos
Mucopolissacaridose III , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Heparitina Sulfato/metabolismo , Hidrolases/genética , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/genética
12.
Curr Opin Neurobiol ; 71: 164-169, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847486

RESUMO

Several lines of evidence, including the discovery of place cells, have contributed to the notion that the hippocampus serves primarily to navigate the environment, as a repository of spatial memories, like a drawer full of charts; and that in some species it has exapted on this original one an episodic memory function. We argue that recent evidence questions the primacy of space, and points at memory load, whether spatial or not, as the challenge that mammalian hippocampal circuitry has evolved to meet.


Assuntos
Hipocampo , Memória Espacial , Animais , Hipocampo/fisiologia , Mamíferos , Transtornos da Memória/fisiopatologia , Memória Episódica , Memória Espacial/fisiologia
13.
Nat Commun ; 12(1): 6137, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675233

RESUMO

The mammalian brain stores and distinguishes among episodic memories, i.e. memories formed during the personal experience, through a mechanism of pattern separation computed in the hippocampal dentate gyrus. Decision-making for food-related behaviors, such as the choice and intake of food, might be affected in obese subjects by alterations in the retrieval of episodic memories. Adult neurogenesis in the dentate gyrus regulates the pattern separation. Several molecular factors affect adult neurogenesis and exert a critical role in the development and plasticity of newborn neurons. Orexin-A/hypocretin-1 and downstream endocannabinoid 2-arachidonoylglycerol signaling are altered in obese mice. Here, we show that excessive orexin-A/2-arachidonoylglycerol/cannabinoid receptor type-1 signaling leads to the dysfunction of adult hippocampal neurogenesis and the subsequent inhibition of plasticity and impairment of pattern separation. By inhibiting orexin-A action at orexin-1 receptors we rescued both plasticity and pattern separation impairment in obese mice, thus providing a molecular and functional mechanism to explain alterations in episodic memory in obesity.


Assuntos
Endocanabinoides/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurogênese , Plasticidade Neuronal , Obesidade/metabolismo , Obesidade/psicologia , Orexinas/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Memória Episódica , Camundongos , Camundongos Obesos , Neurônios/citologia , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais
14.
Brain ; 144(11): 3477-3491, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34297092

RESUMO

Misfolding and aggregation of α-synuclein are specific features of Parkinson's disease and other neurodegenerative diseases defined as synucleinopathies. Parkinson's disease progression has been correlated with the formation and extracellular release of α-synuclein aggregates, as well as with their spread from neuron to neuron. Therapeutic interventions in the initial stages of Parkinson's disease require a clear understanding of the mechanisms by which α-synuclein disrupts the physiological synaptic and plastic activity of the basal ganglia. For this reason, we identified two early time points to clarify how the intrastriatal injection of α-synuclein-preformed fibrils in rodents via retrograde transmission induces time-dependent electrophysiological and behavioural alterations. We found that intrastriatal α-synuclein-preformed fibrils perturb the firing rate of dopaminergic neurons in the substantia nigra pars compacta, while the discharge of putative GABAergic cells of the substantia nigra pars reticulata is unchanged. The α-synuclein-induced dysregulation of nigrostriatal function also impairs, in a time-dependent manner, the two main forms of striatal synaptic plasticity, long-term potentiation and long-term depression. We also observed an increased glutamatergic transmission measured as an augmented frequency of spontaneous excitatory synaptic currents. These changes in neuronal function in the substantia nigra pars compacta and striatum were observed before overt neuronal death occurred. In an additional set of experiments, we were able to rescue α-synuclein-induced alterations of motor function, striatal synaptic plasticity and increased spontaneous excitatory synaptic currents by subchronic treatment with l-DOPA, a precursor of dopamine widely used in the therapy of Parkinson's disease, clearly demonstrating that a dysfunctional dopamine system plays a critical role in the early phases of the disease.


Assuntos
Plasticidade Neuronal/fisiologia , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologia , Transmissão Sináptica/fisiologia , alfa-Sinucleína/toxicidade , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
15.
Nat Commun ; 12(1): 3495, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108486

RESUMO

Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Dopamina/metabolismo , Heparitina Sulfato/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/patologia , Benzazepinas/uso terapêutico , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Heparitina Sulfato/farmacologia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/patologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Mesencéfalo/patologia , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo
16.
Prog Neurobiol ; 197: 101895, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32781107

RESUMO

Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.


Assuntos
Hipocampo , Envelhecimento , Doença de Alzheimer , Demência , Estrogênios , Feminino , Humanos , Masculino , Fatores de Risco
17.
Front Neurosci ; 14: 567129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192254

RESUMO

Parkinson's disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease' pathways or to test novel therapeutic approaches for PD.

18.
Sci Rep ; 10(1): 11338, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647258

RESUMO

Goal-directed navigation can be based on world-centered (allocentric) or body-centered (egocentric) representations of the environment, mediated by a wide network of interconnected brain regions, including hippocampus, striatum and prefrontal cortex. The relative contribution of these regions to navigation from novel or familiar routes, that demand a different degree of flexibility in the use of the stored spatial representations, has not been completely explored. To address this issue, we trained mice to find a reward relying on allocentric or egocentric information, in a modified version of the cross-maze task. Then we used Zif268 expression to map brain activation when well-trained mice were required to find the goal from a novel or familiar location. Successful navigation was correlated with the activation of CA1, posterior-dorsomedial striatum, nucleus accumbens core and infralimbic cortex when allocentric-trained mice needed to use a novel route. Allocentric navigation from a familiar route activated dorsomedial striatum, nucleus accumbens, prelimbic and infralimbic cortex. None of the structures analyzed was significantly activated in egocentric-trained mice, irrespective of the starting position. These data suggest that a flexible use of stored allocentric information, that allows goal finding even from a location never explored during training, induces a shift from fronto-striatal to hippocampal circuits.


Assuntos
Encéfalo/fisiologia , Rede Nervosa , Orientação Espacial , Aprendizagem Espacial , Memória Espacial , Navegação Espacial , Animais , Masculino , Camundongos , Percepção Espacial
19.
Aging Cell ; 19(9): e13189, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729663

RESUMO

Autophagy agonists have been proposed to slow down neurodegeneration. Spermidine, a polyamine that acts as an autophagy agonist, is currently under clinical trial for the treatment of age-related memory decline. How Spermidine and other autophagy agonists regulate memory and synaptic plasticity is under investigation. We set up a novel mouse model of mild cognitive impairment (MCI), in which middle-aged (12-month-old) mice exhibit impaired memory capacity, lysosomes engulfed with amyloid fibrils (ß-amyloid and α-synuclein) and impaired task-induced GluA1 hippocampal post-translation modifications. Subchronic treatment with Spermidine as well as the autophagy agonist TAT-Beclin 1 rescued memory capacity and GluA1 post-translational modifications by favouring the autophagy/lysosomal-mediated degradation of amyloid fibrils. These findings provide new mechanistic evidence on the therapeutic relevance of autophagy enhancers which, by improving the degradation of misfolded proteins, slow down age-related memory decline.


Assuntos
Autofagia/genética , Disfunção Cognitiva/genética , Memória/efeitos dos fármacos , Envelhecimento , Animais , Modelos Animais de Doenças , Camundongos
20.
Sci Rep ; 10(1): 9619, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541823

RESUMO

The presence of α-synuclein aggregates in the retina of Parkinson's disease patients has been associated with vision impairment. In this study we sought to determine the effects of α-synuclein overexpression on the survival and function of dopaminergic amacrine cells (DACs) in the retina. Adult mice were intravitreally injected with an adeno-associated viral (AAV) vector to overexpress human wild-type α-synuclein in the inner retina. Before and after systemic injections of levodopa (L-DOPA), retinal responses and visual acuity-driven behavior were measured by electroretinography (ERG) and a water maze task, respectively. Amacrine cells and ganglion cells were counted at different time points after the injection. α-synuclein overexpression led to an early loss of DACs associated with a decrease of light-adapted ERG responses and visual acuity that could be rescued by systemic injections of L-DOPA. The data show that α-synuclein overexpression affects dopamine neurons in the retina. The approach provides a novel accessible method to model the underlying mechanisms implicated in the pathogenesis of synucleinopathies and for testing novel treatments.


Assuntos
Células Amácrinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Transtornos da Visão/metabolismo , alfa-Sinucleína/metabolismo , Células Amácrinas/patologia , Animais , Neurônios Dopaminérgicos/patologia , Feminino , Imunofluorescência , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/patologia , Degeneração Retiniana/patologia , Transtornos da Visão/patologia , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...