Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 951175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909717

RESUMO

Moisture performance is an important factor determining the resistance of wood-based building materials against fungal decay. Understanding how material porosity and chemistry affect moisture performance is necessary for their efficient use, as well as for product optimisation. In this study, three complementary techniques (X-ray computed tomography, infrared and low-field NMR spectroscopy) are applied to elucidate the influence of additives, manufacturing process and material structure on the liquid water absorption and desorption behaviour of a selection of wood-based panels, thermally modified wood and wood fibre insulation materials. Hydrophobic properties achieved by thermal treatment or hydrophobic additives such as paraffin and bitumen, had a major influence on water absorption and desorption rates. When hydrophobic additives did not play a role, pore distributions and manufacturing process had a decisive influence on the amount and rate of absorption and desorption. In that case, a higher porosity resulted in a higher water absorption rate. Our results show that there is a clear potential for tailoring materials towards specific moisture performance by better understanding the influence of different material characteristics. This is useful both for achieving desired moisture buffering as well as to increase service life of wood-based materials. From a sustainability perspective, fit-for-purpose moisture performance is often easier to achieve and preferred than wood protection by biocide preservative treatments.

2.
IMA Fungus ; 10: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32647616

RESUMO

Traditionally, fungal growth dynamics were assessed manually, limiting the research to a few environmental conditions and/or fungal species. Fortunately, more automated ways of measurement are gaining momentum due to the availability of cheap imaging and processing equipment and the development of dedicated image analysis algorithms. In this paper, we use image analysis to assess the impact of environmental conditions on the growth dynamics of two economically important fungal species, Coniophora puteana and Rhizoctonia solani. Sixteen environmental conditions combining four temperatures (15, 20, 25 and 30 °C) and four relative humidity (RH) conditions (65, 70, 75 and 80% RH) were tested. Fungal growth characteristics were extracted from images of the growing fungi, taken at regular points in time. Advanced time series analysis was applied to quantitatively compare the effect of the environmental conditions on these growth characteristics. The evolution of the mycelial area and the number of tips over time resulted in typical sigmoidal growth curves. Other growth characteristics such as the mean hyphal segment length did not vary significantly over time. Temperature and RH usually had a combined effect on the growth dynamics of the mycelial area and the number of tips. When defining optimal growth conditions for a fungus, it is therefore of primordial importance that the effect of temperature and RH is assessed simultaneously. At the most extreme conditions we tested, the mycelium most probably experienced water stress when developing over the inert Petri dish surface. An RH of 65% (independent of temperature) for C. puteana and a temperature of 30 °C (independent of RH) for both C. puteana and R. solani therefore always resulted in limited fungal growth, while the optimal growing conditions were at 20 °C and 75% RH and at 25 °C and 80% RH for R. solani and at 20 °C and 75% RH for C. puteana. The method applied in this study offers an updated and broader alternative to classical and narrowly focused studies on fungal growth dynamics, and is well suited to efficiently assess the effect of environmental conditions on fungal growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...