Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Med ; 12(12): 13241-13255, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37140360

RESUMO

BACKGROUND: B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the expansion of CD5+ malignant B lymphocytes. Recent discoveries have shown that double-negative T (DNT) cells, double-positive T (DPT) cells, and natural killer T (NKT)-cells may be involved in tumor surveillance. METHODS: A detailed immunophenotypic analysis of the peripheral blood T-cell compartment of 50 patients with B-CLL (classified in three prognostic groups) and 38 healthy donors (as controls) matched for age was performed. The samples were analyzed by flow cytometry using a stain-lyse-no wash technique and a comprehensive six-color antibody panels. RESULTS: Our data confirmed a reduction in percentage values and an increase in absolute values of T lymphocytes in patients with B-CLL, as already reported. In particular, DNT, DPT, and NKT-like percentages were significantly lower than in the controls, except for NKT-like in the low-risk prognostic group. Moreover, a significant rise in the absolute counts of DNT cells in each prognostic group and in the low-risk prognostic group of NKT-like cells was found. A significant correlation of the absolute values of NKT-like cells in the intermediate-risk prognostic group versus B cells was observed. Furthermore, we analyzed whether the increase in T cells was related to the subpopulations of interest. Only DNT cells were positively correlated with the increase in CD3+ T lymphocytes, regardless of the stage of the disease, supporting the hypothesis that this T-cell subset plays a key role in the immune T response in B-CLL. CONCLUSION: These early results supported that DNT, DPT, and NKT-like subsets may be related to disease progression and should encourage further studies aimed at identifying the potential immune surveillance role of these minority T subpopulations.


Assuntos
Leucemia Linfocítica Crônica de Células B , Células T Matadoras Naturais , Humanos , Subpopulações de Linfócitos T , Linfócitos B/patologia , Células T Matadoras Naturais/patologia , Células Matadoras Naturais , Citometria de Fluxo
2.
Clin Exp Med ; 23(8): 4493-4510, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37029309

RESUMO

Allogeneic hematopoietic stem cell transplantation (AHSCT) is a life-saving treatment for selected hematological malignancies. So far, it remains unclear whether transplanted hematopoietic stem/progenitor cells (HSPCs) undergo epigenetic changes upon engraftment in recipient bone marrow (BM) after AHSCT and whether these changes might be useful in the transplant diagnostics. The purpose of this study was to characterize the whole genome methylation profile of HSPCs following AHSCT. Moreover, the relationship between the observed methylation signature and patient outcome was analyzed. Mobilized peripheral blood (mPB)-HSPCs from seven donors and BM-HSPCs longitudinally collected from transplanted patients with hematological malignancies up to one year from AHSCT (a total of twenty-eight samples) were analyzed using DNA methylation based-arrays. The obtained data showed that DNA methylation of mPB-HSPCs differs between young and adult donors and changes following HSPC engraftment in the BM of recipient patients. Looking at methylation in promoter regions, at 30 days post-AHSCT, BM-HSPCs showed a higher number of differentially methylated genes (DMGs) compared to those of mPB-HSPCs, with a prevalent hyper-methylation. These changes were maintained during all the analyzed time points, and methylation became like the donors after one year from transplant. Functional analysis of these DMGs showed an enrichment in cell adhesion, differentiation and cytokine (interleukin-2, -5 and -7) production and signaling pathways. Of note, DNA methylation analysis allowed to identify a potential "cancer/graft methylation signature" of transplant failure. It was evident in the latest available post-transplant BM-HSPC sample (at 160 days) and surprisingly already in early phase (at 30 days) in patients whose transplant was doomed to fail. Overall, the analysis of HSPC methylation profile could offer useful prognostic information to potentially assess engraftment success and predict graft failure in AHSCT.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Medula Óssea , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo , Neoplasias Hematológicas/terapia , Células da Medula Óssea
5.
Front Oncol ; 12: 824562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371979

RESUMO

Acute myeloid leukemia (AML) is an aggressive and heterogeneous clonal disorder of hematopoietic stem/progenitor cells (HSPCs). It is not well known how leukemia cells alter hematopoiesis promoting tumor growth and leukemic niche formation. In this study, we investigated how AML deregulates the hematopoietic process of HSPCs through the release of extracellular vesicles (EVs). First, we found that AML cells released a heterogeneous population of EVs containing microRNAs involved in AML pathogenesis. Notably, AML-EVs were able to influence the fate of HSPCs modifying their transcriptome. In fact, gene expression profile of AML-EV-treated HSPCs identified 923 down- and 630 up-regulated genes involved in hematopoiesis/differentiation, inflammatory cytokine production and cell movement. Indeed, most of the down-regulated genes are targeted by AML-EV-derived miRNAs. Furthermore, we demonstrated that AML-EVs were able to affect HSPC phenotype, modifying several biological functions, such as inhibiting cell differentiation and clonogenicity, activating inflammatory cytokine production and compromising cell movement. Indeed, a redistribution of HSPC populations was observed in AML-EV treated cells with a significant increase in the frequency of common myeloid progenitors and a reduction in granulocyte-macrophage progenitors and megakaryocyte-erythroid progenitors. This effect was accompanied by a reduction in HSPC colony formation. AML-EV treatment of HSPCs increased the levels of CCL3, IL-1B and CSF2 cytokines, involved in the inflammatory process and in cell movement, and decreased CXCR4 expression associated with a reduction of SDF-1 mediated-migration. In conclusion, this study demonstrates the existence of a powerful communication between AML cells and HSPCs, mediated by EVs, which suppresses normal hematopoiesis and potentially contributes to create a leukemic niche favorable to neoplastic development.

6.
Int J Nanomedicine ; 16: 3141-3160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994784

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) are naturally secreted cellular lipid bilayer particles, which carry a selected molecular content. Owing to their systemic availability and their role in tumor pathogenesis, circulating EVs (cEVs) can be a valuable source of new biomarkers useful for tumor diagnosis, prognostication and monitoring. However, a precise approach for isolation and characterization of cEVs as tumor biomarkers, exportable in a clinical setting, has not been conclusively established. METHODS: We developed a novel and laboratory-made procedure based on a bench centrifuge step which allows the isolation of serum cEVs suitable for subsequent characterization of their size, amount and phenotype by nanoparticle tracking analysis, microscopy and flow cytometry, and for nucleic acid assessment by digital PCR. RESULTS: Applied to blood from healthy subjects (HSs) and tumor patients, our approach permitted from a small volume of serum (i) the isolation of a great amount of EVs enriched in small vesicles free from protein contaminants; (ii) a suitable and specific cell origin identification of EVs, and (iii) nucleic acid content assessment. In clonal plasma cell malignancy, like multiple myeloma (MM), our approach allowed us to identify specific MM EVs, and to characterize their size, concentration and microRNA content allowing significant discrimination between MM and HSs. Finally, EV associated biomarkers correlated with MM clinical parameters. CONCLUSION: Overall, our cEV based procedure can play an important role in malignancy biomarker discovery and then in real-time tumor monitoring using minimal invasive samples. From a practical point of view, it is smart (small sample volume), rapid (two hours), easy (no specific expertise required) and requirements are widely available in clinical laboratories.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/patologia , MicroRNAs/sangue , Mieloma Múltiplo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Vesículas Extracelulares/metabolismo , Feminino , Seguimentos , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Fenótipo , Prognóstico
7.
Front Med (Lausanne) ; 8: 793040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977093

RESUMO

Multiple myeloma (MM) is characterized by the abnormal proliferation of clonal plasma cells (PCs) in bone marrow (BM). MM-PCs progressively occupy and likely alter BM niches where reside hematopoietic stem and progenitor cells (HSPCs) whose viability, self-renewal, proliferation, commitment, and differentiation are essential for normal hematopoiesis. Extracellular vesicles (EVs) are particles released by normal and neoplastic cells, such as MM cells. They are important cell-to-cell communicators able to modify the phenotype, genotype, and the fate of the recipient cells. Investigation of mechanisms and mediators underlying HSPC-MM-PC crosstalk is warranted to better understand the MM hematopoietic impairment and for the identification of novel therapeutic strategies against this incurable malignancy. This study is aimed to evaluate whether EVs released by MM-PCs interact with HSPCs, what effects they exert, and the underlying mechanisms involved. Therefore, we investigated the viability, cell cycle, phenotype, clonogenicity, and microRNA profile of HSPCs exposed to MM cell line-released EVs (MM-EVs). Our data showed that: (i) MM cells released a heterogeneous population of EVs; (ii) MM-EVs caused a dose-dependent reduction of HSPCs viability; (iii) MM-EVs caused a redistribution of the HSPC pool characterized by a significant increase in the frequency of stem and early precursors accompanied by a reduction of late precursor cells, such as common myeloid progenitors (CMPs), megakaryocyte erythroid progenitors (MEPs), B and NK progenitors, and a slight increase of granulocyte macrophage progenitors (GMPs); (iv) MM-EVs caused an increase of stem and early precursors in S phase with a decreased number of cells in G0/G1 phase in a dose-dependent manner; (v) MM-EVs reduced the HSPC colony formation; and (vi) MM-EVs caused an increased expression level of C-X-C motif chemokine receptor type 4 (CXCR4) and activation of miRNAs. In conclusion, MM cells through the release of EVs, by acting directly on normal HSPCs, negatively dysregulate normal hematopoiesis, and this could have important therapeutic implications.

8.
Leukemia ; 35(3): 661-678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33299143

RESUMO

In the era of precision medicine, liquid biopsy is becoming increasingly important in oncology. It consists in the isolation and analysis of tumor-derived biomarkers, including extracellular vesicles (EVs), in body fluids. EVs are lipid bilayer-enclosed particles, heterogeneous in size and molecular composition, released from both normal and neoplastic cells. In tumor context, EVs are valuable carriers of cancer information; in fact, their amount, phenotype and molecular cargo, including proteins, lipids, metabolites and nucleic acids, mirror nature and origin of parental cells rendering EVs appealing candidates as novel biomarkers. Translation of these new potential diagnostic tools into clinical practice could deeply revolutionize the cancer field mainly for solid tumors but for hematological neoplasms, too.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Hematológicas/diagnóstico , Biópsia Líquida/métodos , Medicina de Precisão , Biomarcadores Tumorais/genética , Vesículas Extracelulares/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Fenótipo
9.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105817

RESUMO

Azorella glabra Wedd. (AG) is traditionally used to treat gonorrhea or kidney's problems. The antioxidant, antidiabetic, anticholinesterase and in vitro antitumor activities of AG extracts were recently reported. The aim of this work was to investigate anti-leukemic properties of AG chloroform fraction (AG CHCl3) and of its ten sub-fractions (I-X) and to identify their possible bioactive compounds. We determined their in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) and superoxide anion (SO) assays, and their phytochemical profile by spectrophotometric and LC-MS/MS techniques. I-X action on two acute myeloid leukemia (AML) cell lines viability, apoptosis and cell cycle were evaluated by MTS, western blotting and cytofluorimetric assays. Different polyphenol, flavonoid and terpenoid amount, and antioxidant activity were found among all samples. Most of I-X induced a dose/time dependent reduction of cell viability higher than parent extract. IV and VI sub-fractions showed highest cytotoxic activity and, of note, a negligible reduction of healthy cell viability. They activated intrinsic apoptotic pathway, induced a G0/G1 block in leukemic cells and, interestingly, led to apoptosis in patient AML cells. These activities could be due to mulinic acid or azorellane terpenoids and their derivatives, tentatively identified in both IV and VI. In conclusion, our data suggest AG plant as a source of potential anti-AML agents.


Assuntos
Antineoplásicos Fitogênicos/química , Antioxidantes/química , Apiaceae/química , Flavonoides/química , Leucemia Mieloide Aguda/tratamento farmacológico , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Terpenos/química , Idoso , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Clorofórmio/química , Descoberta de Drogas , Feminino , Humanos , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Solventes/química , Espectrometria de Massas em Tandem
10.
Cell Death Differ ; 27(1): 345-362, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186534

RESUMO

Embryonic stem cells (ESCs) fluctuate among different levels of pluripotency defined as metastates. Sporadically, metastable cellular populations convert to a highly pluripotent metastate that resembles the preimplantation two-cell embryos stage (defined as 2C stage) in terms of transcriptome, DNA methylation, and chromatin structure. Recently, we found that the retinoic acid (RA) signaling leads to a robust increase of cells specifically expressing 2C genes, such as members of the Prame family. Here, we show that Gm12794c, one of the most highly upregulated Prame members, and previously identified as a key player for the maintenance of pluripotency, has a functional role in conferring ESCs resistance to RA signaling. In particular, RA-dependent expression of Gm12794c induces a ground state-like metastate, as evaluated by activation of 2C-specific genes, global DNA hypomethylation and rearrangement of chromatin similar to that observed in naive totipotent preimplantation epiblast cells and 2C-like cells. Mechanistically, we demonstrated that Gm12794c inhibits Cdkn1A gene expression through the polycomb repressive complex 2 (PRC2) histone methyltransferase activity. Collectively, our data highlight a molecular mechanism employed by ESCs to counteract retinoic acid differentiation stimuli and contribute to shed light on the molecular mechanisms at grounds of ESCs naive pluripotency-state maintenance.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas/fisiologia , Tretinoína/farmacologia , Acetilação , Motivos de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/enzimologia , Técnicas de Introdução de Genes , Histonas/metabolismo , Proteínas de Repetições Ricas em Leucina , Camundongos , Família Multigênica , Células NIH 3T3 , Filogenia , Complexo Repressor Polycomb 2/fisiologia , Proteínas/química , Proteínas/classificação , Proteínas/genética , Transdução de Sinais , Transcrição Gênica
11.
Mol Cytogenet ; 12: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312256

RESUMO

BACKGROUND: Acute promyelocytic leukemia (APL) is characterized by fusion of PML/RARα genes as a result of t(15;17)(q24;q21). APL is now one of the curable hematological malignancies thanks to molecularly targeted therapies based on all-trans retinoic acid (ATRA) and arsenic trioxide (ATX). Extramedullary (EM) relapse is a rare event in APL, ear involvement being even more infrequent, with only six cases so far described. About 30-35% of patients with newly diagnosed APL have additional cytogenetics abnormalities, whose prognostic significance is still controversial. The most common additional aberration is trisomy 8 or partial gain 8q. CASE PRESENTATION: We describe here a novel unbalanced translocation der(3)t(3;8)(q29;q23.3-q24.3) associated with 8q partial gain in a 41 year-old man affected by APL in molecular remission after first line treatment, who had a responsive EM relapse in the auditory canal. CONCLUSIONS: EM relapse is a rare event in APL and ear involvement is even more infrequent. To our knowledge, this is the first reported case of APL with a new der(3)t(3;8)(q29;q23.3-q24.3) and 8q partial gain associated with t(15;17)(q24;q21). Despite the recurrence of the disease at EM level, the clinical outcome of this patients was favorable.

12.
Stem Cell Res Ther ; 10(1): 171, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196186

RESUMO

BACKGROUND: Administration of the iron chelator deferasirox (DFX) in transfusion-dependent patients occasionally results in haematopoiesis recovery by a mechanism remaining elusive. This study aimed to investigate at a molecular level a general mechanism underlying DFX beneficial effects on haematopoiesis, both in healthy and pathological conditions. METHODS: Human healthy haematopoietic stem/progenitor cells (HS/PCs) and three leukemia cell lines were treated with DFX. N-Acetyl cysteine (NAC) and fludarabine were added as antioxidant and STAT1 inhibitor, respectively. In vitro colony-forming assays were assessed both in healthy and in leukemia cells. Intracellular and mitochondrial reactive oxygen species (ROS) as well as mitochondrial content were assessed by cytofluorimetric and confocal microscopy analysis; mtDNA was assessed by qRT-PCR. Differentiation markers were monitored by cytofluorimetric analysis. Gene expression analysis (GEA) was performed on healthy HS/PCs, and differently expressed genes were validated in healthy and leukemia cells by qRT-PCR. STAT1 expression and phosphorylation were assessed by Western blotting. Data were compared by an unpaired Student t test or one-way ANOVA. RESULTS: DFX, at clinically relevant concentrations, increased the clonogenic capacity of healthy human CD34+ HS/PCs to form erythroid colonies. Extension of this analysis to human-derived leukemia cell lines Kasumi-1, K562 and HL60 confirmed DFX capacity to upregulate the expression of specific markers of haematopoietic commitment. Notably, the abovementioned DFX-induced effects are all prevented by the antioxidant NAC and accompanied with overproduction of mitochondria-generated reactive oxygen species (ROS) and increase of mitochondrial content and mtDNA copy number. GEA unveiled upregulation of genes linked to interferon (IFN) signalling and tracked back to hyper-phosphorylation of STAT1. Treatment of leukemic cell lines with NAC prevented the DFX-mediated phosphorylation of STAT1 as well as the expression of the IFN-stimulated genes. However, STAT1 inhibition by fludarabine was not sufficient to affect differentiation processes in leukemic cell lines. CONCLUSIONS: These findings suggest a significant involvement of redox signalling as a major regulator of multiple DFX-orchestrated events promoting differentiation in healthy and tumour cells. The understanding of molecular mechanisms underlying the haematological response by DFX would enable to predict patient's ability to respond to the drug, to extend treatment to other patients or to anticipate the treatment, regardless of the iron overload.


Assuntos
Deferasirox/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Interferons/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Stem Cell Res Ther ; 10(1): 138, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109375

RESUMO

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (AHSCT) is a curative therapeutic approach for different hematological malignancies (HMs), and epigenetic modifications, including DNA methylation, play a role in the reconstitution of the hematopoietic system after AHSCT. This study aimed to explore global DNA methylation dynamic of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) from donors and their respective recipients affected by acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) and Hodgkin lymphoma (HL) during the first year after transplant. METHODS: We measured DNA methylation profile by Illumina HumanMethylationEPIC in BM HSPC of 10 donors (t0) and their matched recipients at different time points after AHSCT, at day + 30 (t1), + 60 (t2), + 120 (t3), + 180 (t4), and + 365 (t5). Differential methylation analysis was performed by using R software and CRAN/Bioconductor packages. Gene set enrichment analysis was carried out on promoter area of significantly differentially methylated genes by clusterProfiler package and the mSigDB genes sets. RESULTS: Results show significant differences in the global methylation profile between HL and acute leukemias, and between patients with mixed and complete chimerism, with a strong methylation change, with prevailing hyper-methylation, occurring 30 days after AHSCT. Functional analysis of promoter methylation changes identified genes involved in hematopoietic cell activation, differentiation, shaping, and movement. This could be a consequence of donor cell "adaptation" in recipient BM niche. Interestingly, this epigenetic remodeling was reversible, since methylation returns similar to that of donor HSPCs after 1 year. Only for a pool of genes, mainly involved in dynamic shaping and trafficking, the DNA methylation changes acquired after 30 days were maintained for up to 1 year post-transplant. Finally, preliminary data suggest that the methylation profile could be used as predictor of relapse in ALL. CONCLUSIONS: Overall, these data provide insights into the DNA methylation changes of HSPCs after transplantation and a new framework to investigate epigenetics of AHSCT and its outcomes.


Assuntos
Metilação de DNA/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Expert Rev Mol Diagn ; 19(3): 249-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30782029

RESUMO

INTRODUCTION: Multiple myeloma (MM) is characterized by a clonal proliferation of neoplastic plasma cells (PCs) in bone marrow (BM) and the interplay between MM PCs and the BM microenvironment, which plays a relevant role in its pathogenesis. In this important cross-talk, extracellular vesicles (EVs) are active. EVs, including small and medium/large EVs, are lipid bi-layer particles released in circulation by normal and neoplastic cells. A selected cargo of lipids, proteins, and nucleic acids is loaded into EVs, and delivered locally and to distant sites, thus influencing the physiology of recipient cells. In the 'liquid biopsy' context, EVs can be isolated from human biofluids proving to be powerful markers in cancer. Areas covered: Here, we summarize the recent advances on EVs in MM field. Expert commentary: EVs from MM PCs: i) enhance malignant cell proliferation and aggressiveness through an autocrine loop; ii) are able to transfer drug resistance in sensitive-drug cells; iii) stimulate angiogenesis; iv) increase the activity of osteoclasts; v) have immunosuppressive effects. In addition, EVs from MM stromal cells also promote MM cell proliferation and drug resistance. Finally, we underline the importance of EVs as MM potential biomarkers in 'cancer liquid biopsy' and as a potential new therapeutic target.


Assuntos
Comunicação Autócrina , Vesículas Extracelulares/metabolismo , Mieloma Múltiplo/diagnóstico , Antineoplásicos/farmacologia , Biomarcadores/sangue , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Mieloma Múltiplo/sangue , Microambiente Tumoral
15.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373165

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl3) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl3 fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apiaceae/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Humanos , Polifenóis/química , Polifenóis/farmacologia , Terpenos/química , Terpenos/farmacologia
16.
Stem Cells Int ; 2018: 9863194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977309

RESUMO

The bone marrow (BM) microenvironment in hematological malignancies (HMs) comprises heterogeneous populations of neoplastic and nonneoplastic cells. Cancer stem cells (CSCs), neoplastic cells, hematopoietic stem cells (HSCs), and mesenchymal stromal/stem cells (MSCs) are all components of this microenvironment. CSCs are the HM initiators and are associated with neoplastic growth and drug resistance, while HSCs are able to reconstitute the entire hematopoietic system; finally, MSCs actively support hematopoiesis. In some HMs, CSCs and neoplastic cells compromise the normal development of HSCs and perturb BM-MSCs. In response, "reprogrammed" MSCs generate a favorable environment to support neoplastic cells. Extracellular vesicles (EVs) are an important cell-to-cell communication type in physiological and pathological conditions. In particular, in HMs, EV secretion participates to unidirectional and bidirectional interactions between neoplastic cells and BM cells. The transfer of EV molecular cargo triggers different responses in target cells; in particular, malignant EVs modify the BM environment in favor of neoplastic cells at the expense of normal HSCs, by interfering with antineoplastic immunity and participating in resistance to treatment. Here, we review the role of EVs in BM cell communication in physiological conditions and in HMs, focusing on the effects of BM niche EVs on HSCs and MSCs.

17.
Int J Mol Sci ; 19(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401684

RESUMO

Acute myeloid leukemias (AML) are clonal disorders of hematopoietic progenitor cells which are characterized by relevant heterogeneity in terms of phenotypic, genotypic, and clinical features. Among the genetic aberrations that control disease development there are microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate, at post-transcriptional level, translation and stability of mRNAs. It is now established that deregulated miRNA expression is a prominent feature in AML. Functional studies have shown that miRNAs play an important role in AML pathogenesis and miRNA expression signatures are associated with chemotherapy response and clinical outcome. In this review we summarized miRNA signature in AML with different cytogenetic, molecular and clinical characteristics. Moreover, we reviewed the miRNA regulatory network in AML pathogenesis and we discussed the potential use of cellular and circulating miRNAs as biomarkers for diagnosis and prognosis and as therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/terapia , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Antagomirs/uso terapêutico , Biomarcadores Tumorais/agonistas , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Aberrações Cromossômicas , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Oligorribonucleotídeos/uso terapêutico , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Oncol (Dordr) ; 40(5): 483-496, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28721629

RESUMO

PURPOSE: Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS: EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS: We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS: Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.


Assuntos
Movimento Celular/genética , Mieloma Múltiplo/genética , Neovascularização Patológica/genética , Receptor EphA3/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Adesão Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Neovascularização Patológica/metabolismo , Interferência de RNA , Receptor EphA3/imunologia , Receptor EphA3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Death Dis ; 8(6): e2849, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569789

RESUMO

Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in 'AML with maturation' (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Células Progenitoras Mieloides/metabolismo , Proteínas de Ligação a RNA/genética , Anexina A1/genética , Anexina A1/metabolismo , Antagomirs/genética , Antagomirs/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hematopoese/genética , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Células Progenitoras Mieloides/patologia , Nucleofosmina , Cultura Primária de Células , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Tristetraprolina/genética , Tristetraprolina/metabolismo
20.
Int J Mol Sci ; 18(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574430

RESUMO

Extracellular vesicles (EVs) are a heterogeneous group of particles, between 15 nanometers and 10 microns in diameter, released by almost all cell types in physiological and pathological conditions, including tumors. EVs have recently emerged as particularly interesting informative vehicles, so that they could be considered a true "cell biopsy". Indeed, EV cargo, including proteins, lipids, and nucleic acids, generally reflects the nature and status of the origin cells. In some cases, EVs are enriched of peculiar molecular cargo, thus suggesting at least a degree of specific cellular packaging. EVs are identified as important and critical players in intercellular communications in short and long distance interplays. Here, we examine the physiological role of EVs and their activity in cross-talk between bone marrow microenvironment and neoplastic cells in hematological malignancies (HMs). In these diseases, HM EVs can modify tumor and bone marrow microenvironment, making the latter "stronger" in supporting malignancy, inducing drug resistance, and suppressing the immune system. Moreover, EVs are abundant in biologic fluids and protect their molecular cargo against degradation. For these and other "natural" characteristics, EVs could be potential biomarkers in a context of HM liquid biopsy and therapeutic tools. These aspects will be also analyzed in this review.


Assuntos
Medula Óssea/patologia , Vesículas Extracelulares/patologia , Neoplasias Hematológicas/patologia , Animais , Comunicação Celular , Humanos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...