Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(3): 984-999, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857791

RESUMO

Endoplasmic reticulum stress is an emerging significant player in the molecular pathology of connective tissue disorders. In response to endoplasmic reticulum stress, cells can upregulate macroautophagy/autophagy, a fundamental cellular homeostatic process used by cells to degrade and recycle proteins or remove damaged organelles. In these scenarios, autophagy activation can support cell survival. Here we demonstrated by in vitro and in vivo approaches that megakaryocytes derived from col6a1-/- (collagen, type VI, alpha 1) null mice display increased intracellular retention of COL6 polypeptides, endoplasmic reticulum stress and apoptosis. The unfolded protein response is activated in col6a1-/- megakaryocytes, as evidenced by the upregulation of molecular chaperones, by the increased splicing of Xbp1 mRNA and by the higher level of the pro-apoptotic regulator DDIT3/CHOP. Despite the endoplasmic reticulum stress, basal autophagy is impaired in col6a1-/- megakaryocytes, which show lower BECN1 levels and reduced autophagosome maturation. Starvation and rapamycin treatment rescue the autophagic flux in col6a1-/- megakaryocytes, leading to a decrease in intracellular COL6 polypeptide retention, endoplasmic reticulum stress and apoptosis. Furthermore, megakaryocytes cultured from peripheral blood hematopoietic progenitors of patients affected by Bethlem myopathy and Ullrich congenital muscular dystrophy, two COL6-related disorders, displayed increased apoptosis, endoplasmic reticulum stress and impaired autophagy. These data demonstrate that genetic disorders of collagens, endoplasmic reticulum stress and autophagy regulation in megakaryocytes may be interrelated.Abbreviations: 7-AAD: 7-amino-actinomycin D; ATF: activating transcriptional factor; BAX: BCL2 associated X protein; BCL2: B cell leukemia/lymphoma 2; BCL2L1/Bcl-xL: BCL2-like 1; BM: bone marrow; COL6: collagen, type VI; col6a1-/-: mice that are null for Col6a1; DDIT3/CHOP/GADD153: DNA-damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; reticulophagy: endoplasmic reticulum-selective autophagy; HSPA5/Bip: heat shock protein 5; HSP90B1/GRP94: heat shock protein 90, beta (Grp94), member 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; Mk: megakaryocytes; MTOR: mechanistic target of rapamycin kinase; NIMV: noninvasive mechanical ventilation; PI3K: phosphoinositide 3-kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; RT-qPCR: reverse transcription-quantitative real-time PCR; ROS: reactive oxygen species; SERPINH1/HSP47: serine (or cysteine) peptidase inhibitor, clade H, member 1; sh-RNA: short hairpin RNA; SOCE: store operated calcium entry; UCMD: Ullrich congenital muscular dystrophy; UPR: unfolded protein response; WIPI2: WD repeat domain, phosphoinositide-interacting 2; WT: wild type; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Autofagia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Megacariócitos/metabolismo , Colágeno Tipo VI , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Chaperona BiP do Retículo Endoplasmático , Proteínas Proto-Oncogênicas c-bcl-2 , Sirolimo
2.
Thromb Haemost ; 122(9): 1479-1485, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35189660

RESUMO

Type 2N is a rare von Willebrand disease (VWD) variant involving an impairment in the factor VIII (FVIII) carrier function of von Willebrand factor (VWF). It has a phenotype that mimics hemophilia A, and FVIII binding to VWF (VWF:FVIIIB) is tested to differentiate between the two disorders. Type 2N VWF defects may also be associated with quantitative VWF mutations (type 2N/type 1), further complicating the identification of cases. We report on a new quantitative VWF mutation (c.2547-1G > T) revealed by a p.R854Q type 2N mutation acting as homozygous despite being carried as a heterozygous defect. The proband had near-normal VWF levels (initially ruling out a defective VWF synthesis) and slightly reduced FVIII levels, while a VWF:FVIIIB test showed significantly reduced binding. Routine tests on type 2N homozygotes or heterozygotes combined with quantitative VWF defects in our cohort showed reduced FVIII levels in both groups, but it was only in the former that the FVIII/VWF antigen (VWF:Ag) ratio was always significantly reduced. The two tests are therefore not enough to identify all forms of type 2N VWD. While relatives of type 2N homozygotes usually have normal FVIII levels and FVIII/VWF:Ag ratios, relatives of type 2N/type 1 may have high FVIII/VWF:Ag ratios, but their VWF:FVIIIB and/or VWF:FVIIIB/VWF:Ag ratios are always low. Measuring FVIII and VWF levels may therefore suggest type 2N VWD in patients carrying type 2N mutations alone, but not in type 2N combined with quantitative VWF defects. The VWF:FVIIIB test should consequently be included when exploring VWF function, whatever VWD patient's phenotype.


Assuntos
Hemofilia A , Doença de von Willebrand Tipo 2 , Doenças de von Willebrand , Fator VIII , Humanos , Mutação , Fator de von Willebrand
3.
Blood Adv ; 5(23): 5150-5163, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34547769

RESUMO

Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI-related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI-null mouse model (Col6a1-/-), we found that collagen VI-null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1-/- megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1-/- mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1-/- mice. Peripheral blood platelets of patients affected by collagen VI-related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI-related diseases.


Assuntos
Plaquetas , Sinalização do Cálcio , Animais , Plaquetas/metabolismo , Colágeno , Humanos , Megacariócitos/metabolismo , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
4.
Phys Rev Lett ; 126(11): 113401, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798369

RESUMO

We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry. Using two rotational states of the molecules, we encode a spin 1/2 degree of freedom. To describe the many-body spin dynamics of the molecules, we derive a long-range interacting XXZ model valid in the regime where motional degrees of freedom are frozen. Because of the spatially extended nature of the harmonic oscillator modes, the interactions in the spin model are very long ranged, and the system behaves close to the collective limit, resulting in robust dynamics and generation of entanglement in the form of spin squeezing even at finite temperature and in the presence of dephasing and chemical reactions. We discuss how the internal state structure can be exploited to realize time reversal and enhanced metrological sensing protocols.

5.
Nature ; 588(7837): 239-243, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299192

RESUMO

The control of molecules is key to the investigation of quantum phases, in which rich degrees of freedom can be used to encode information and strong interactions can be precisely tuned1. Inelastic losses in molecular collisions2-5, however, have greatly hampered the engineering of low-entropy molecular systems6. So far, the only quantum degenerate gas of molecules has been created via association of two highly degenerate atomic gases7,8. Here we use an external electric field along with optical lattice confinement to create a two-dimensional Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules, in which elastic, tunable dipolar interactions dominate over all inelastic processes. Direct thermalization among the molecules in the trap leads to efficient dipolar evaporative cooling, yielding a rapid increase in phase-space density. At the onset of quantum degeneracy, we observe the effects of Fermi statistics on the thermodynamics of the molecular gas. These results demonstrate a general strategy for achieving quantum degeneracy in dipolar molecular gases in which strong, long-range and anisotropic dipolar interactions can drive the emergence of exotic many-body phases, such as interlayer pairing and p-wave superfluidity.

6.
Science ; 370(6522): 1324-1327, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303614

RESUMO

Full control of molecular interactions, including reactive losses, would open new frontiers in quantum science. We demonstrate extreme tunability of ultracold chemical reaction rates by inducing resonant dipolar interactions by means of an external electric field. We prepared fermionic potassium-rubidium molecules in their first excited rotational state and observed a modulation of the chemical reaction rate by three orders of magnitude as we tuned the electric field strength by a few percent across resonance. In a quasi-two-dimensional geometry, we accurately determined the contributions from the three dominant angular momentum projections of the collisions. Using the resonant features, we shielded the molecules from loss and suppressed the reaction rate by an order of magnitude below the background value, thereby realizing a long-lived sample of polar molecules in large electric fields.

7.
Phys Rev Lett ; 124(3): 033401, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031827

RESUMO

We observe thermalization in the production of a degenerate Fermi gas of polar ^{40}K^{87}Rb molecules. By measuring the atom-dimer elastic scattering cross section near the Feshbach resonance, we show that Feshbach molecules rapidly reach thermal equilibrium with both parent atomic species. Equilibrium is essentially maintained through coherent transfer to the ground state. Sub-Poissonian density fluctuations in Feshbach and ground-state molecules are measured, giving an independent characterization of degeneracy and directly probing the molecular Fermi-Dirac distribution.

8.
Haematologica ; 105(4): 1120-1128, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31320553

RESUMO

We report a new pathogenic mechanism in von Willebrand disease involving the use of a non-canonical splicing site. The proband, carrying the homozygous c.2269_2270del mutation previously classified as a type 3 mutation, showed severely reduced plasma and platelet von Willebrand factor antigen levels and functions, and no factor VIII binding capacity. A particular von Willebrand factor multimer pattern emerged in plasma, characterized by the presence of only two oligomers: the dimer and an unusually large band, with no intermediate components. There were von Willebrand factor multimers in platelets, but each band ran more slowly than the normal counterpart. No anti-von Willebrand factor antibodies were detectable. The proband was classified as having severe type 1 von Willebrand disease. Seeking the relationship between phenotype and genotype, we found the c.2269_2270del mutation associated with three different RNA: r.2269_2270del (RNAI), giving a truncated von Willebrand factor protein; r.[2269_2270del;2282_2288del] (RNAII), resulting from activation of a cryptic "AG" splicing site; and r.[2269_2270del;2281_2282insAG] (RNAIII), where the wild-type "AG" acceptor of exon 18 was retained due to the non-canonical 2279-2280 "CG" acceptor splicing site being used. The aberrant RNAII and RNAIII caused the alteration of the furin cleavage and binding sites, respectively, both resulting in a von Willebrand factor protein characterized by the persistence of von Willebrand factor propeptide, as confirmed by western blot analysis of the recombinant mutated von Willebrand factor molecules produced in vitro Taken together, these findings explain the residual von Willebrand factor synthesis, slower-running multimers, and absent factor VIII binding capacity. The apparently pure gene null mutation c.2269_2270del profoundly alters von Willebrand factor gene splicing, inducing a complex RNA expression pattern.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Adolescente , Idoso , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Sítios de Splice de RNA/genética , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
9.
J Exp Med ; 216(3): 587-604, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30733282

RESUMO

The fibronectin EDA isoform (EDA FN) is instrumental in fibrogenesis but, to date, its expression and function in bone marrow (BM) fibrosis have not been explored. We found that mice constitutively expressing the EDA domain (EIIIA+/+), but not EDA knockout mice, are more prone to develop BM fibrosis upon treatment with the thrombopoietin (TPO) mimetic romiplostim (TPOhigh). Mechanistically, EDA FN binds to TLR4 and sustains progenitor cell proliferation and megakaryopoiesis in a TPO-independent fashion, inducing LPS-like responses, such as NF-κB activation and release of profibrotic IL-6. Pharmacological inhibition of TLR4 or TLR4 deletion in TPOhigh mice abrogated Mk hyperplasia, BM fibrosis, IL-6 release, extramedullary hematopoiesis, and splenomegaly. Finally, developing a novel ELISA assay, we analyzed samples from patients affected by primary myelofibrosis (PMF), a well-known pathological situation caused by altered TPO signaling, and found that the EDA FN is increased in plasma and BM biopsies of PMF patients as compared with healthy controls, correlating with fibrotic phase.


Assuntos
Fibronectinas/sangue , Fibronectinas/metabolismo , Megacariócitos/metabolismo , Mielofibrose Primária/patologia , Receptor 4 Toll-Like/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Animais , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Fibronectinas/genética , Humanos , Masculino , Megacariócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Osteomielite/metabolismo , Osteomielite/patologia , Mielofibrose Primária/metabolismo , Trombopoetina/genética , Trombopoetina/metabolismo , Receptor 4 Toll-Like/genética
10.
Haematologica ; 104(5): 919-928, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30630982

RESUMO

Sickle cell disease is an autosomal recessive genetic red cell disorder with a worldwide distribution. Growing evidence suggests a possible involvement of complement activation in the severity of clinical complications of sickle cell disease. In this study we found activation of the alternative complement pathway with microvascular deposition of C5b-9 on skin biopsies from patients with sickle cell disease. There was also deposition of C3b on sickle red cell membranes, which is promoted locally by the exposure of phosphatidylserine. In addition, we showed for the first time a peculiar "stop-and-go" motion of sickle cell red blood cells on tumor factor-α-activated vascular endothelial surfaces. Using the C3b/iC3b binding plasma protein factor Has an inhibitor of C3b cell-cell interactions, we found that factor H and its domains 19-20 prevent the adhesion of sickle red cells to the endothelium, normalizing speed transition times of red cells. We documented that factor H acts by preventing the adhesion of sickle red cells to P-selectin and/or the Mac-1 receptor (CD11b/CD18), supporting the activation of the alternative pathway of complement as an additional mechanism in the pathogenesis of acute sickle cell related vaso-occlusive crises. Our data provide a rationale for further investigation of the potential contribution of factor H and other modulators of the alternative complement pathway with potential implications for the treatment of sickle cell disease.


Assuntos
Anemia Falciforme/patologia , Adesão Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Endotélio Vascular/patologia , Eritrócitos Anormais/patologia , Eritrócitos/patologia , Adolescente , Adulto , Anemia Falciforme/genética , Anemia Falciforme/imunologia , Anemia Falciforme/metabolismo , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Eritrócitos Anormais/imunologia , Eritrócitos Anormais/metabolismo , Feminino , Seguimentos , Humanos , Antígeno de Macrófago 1/metabolismo , Masculino , Pessoa de Meia-Idade , Selectina-P/metabolismo , Adulto Jovem
11.
Science ; 363(6429): 853-856, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30655445

RESUMO

Experimental realization of a quantum degenerate gas of molecules would provide access to a wide range of phenomena in molecular and quantum sciences. However, the very complexity that makes ultracold molecules so enticing has made reaching degeneracy an outstanding experimental challenge over the past decade. We now report the production of a degenerate Fermi gas of ultracold polar molecules of potassium-rubidium. Through coherent adiabatic association in a deeply degenerate mixture of a rubidium Bose-Einstein condensate and a potassium Fermi gas, we produce molecules at temperatures below 0.3 times the Fermi temperature. We explore the properties of this reactive gas and demonstrate how degeneracy suppresses chemical reactions, making a long-lived degenerate gas of polar molecules a reality.

13.
PLoS One ; 12(9): e0184941, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922391

RESUMO

A new biosensor for the real-time analysis of thrombus formation is reported. The fast and accurate monitoring of the individual thrombotic risk represents a challenge in cardiovascular diagnostics and in treatment of hemostatic diseases. Thrombus volume, as representative index of the related thrombotic status, is usually estimated with confocal microscope at the end of each in vitro experiment, without providing a useful behavioral information of the biological sample such as platelets adhesion and aggregation in flowing blood. Our device has been developed to work either independently or integrated with the microscopy system; thus, images of the fluorescently labeled platelets are acquired in real-time during the whole blood perfusion, while the global electrical impedance of the blood sample is simultaneously monitored between a pair of specifically designed gold microelectrodes. Fusing optical and electrical data with a novel technique, the dynamic of thrombus formation events in flowing blood can be reconstructed in real-time, allowing an accurate extrapolation of the three-dimensional shape and the spatial distribution of platelet thrombi forming and growing within artificial capillaries. This biosensor is accurate and it has been used to discriminate different hemostatic conditions and to identify weakening and detaching platelet aggregates. The results obtained appear compatible with those quantified with the traditional optical method. With advantages in terms of small size, user-friendliness and promptness of response, it is a promising device for the fast and automatic individual health monitoring at the Point of Care (POC).


Assuntos
Técnicas Biossensoriais , Plaquetas/metabolismo , Monitorização Fisiológica , Sistemas Automatizados de Assistência Junto ao Leito , Trombose/sangue , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Temperatura Baixa , Impedância Elétrica , Feminino , Humanos , Masculino , Microeletrodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
14.
J Chem Phys ; 145(9): 094501, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608998

RESUMO

Water's extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O-H stretching vibrations in liquid H2O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water's complex ultrafast dynamics. The spectral evolution following excitation of the O-H stretching resonance reveals vibrational dynamics on the 50-300 fs time scale that are dominated by intermolecular delocalization. These O-H stretch excitons are a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O-H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O-H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ∼1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.

15.
J Am Chem Soc ; 138(30): 9634-45, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404015

RESUMO

The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell.

16.
J Phys Chem Lett ; 7(10): 1769-74, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27115316

RESUMO

Water's ability to donate and accept hydrogen bonds leads to unique and complex collective dynamical phenomena associated with its hydrogen-bond network. It is appreciated that the vibrations governing liquid water's molecular dynamics are delocalized, with nuclear motion evolving coherently over the span of several molecules. Using two-dimensional infrared spectroscopy, we have found that the nuclear motions of heavy water, D2O, are qualitatively different than those of H2O. The nonlinear spectrum of liquid D2O reveals distinct O-D stretching resonances, in contrast to H2O. Furthermore, our data indicates that condensed-phase O-D vibrations have a different character than those in the gas phase, which we understand in terms of weakly delocalized symmetric and antisymmetric stretching vibrations. This difference in molecular dynamics reflects the shift in the balance between intra- and intermolecular couplings upon deuteration, an effect which can be understood in terms of the anharmonicity of the nuclear potential energy surface.

17.
Stem Cells ; 34(8): 2263-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090359

RESUMO

Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268.


Assuntos
Processamento Alternativo/genética , Fibronectinas/química , Fibronectinas/genética , Hematopoese , Homeostase , Especificidade de Órgãos , Animais , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos
18.
Thromb Haemost ; 115(2): 333-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26510894

RESUMO

Platelets contain and release matrix metalloproteinase-2 (MMP-2) that in turn potentiates platelet aggregation. Platelet deposition on a damaged vascular wall is the first, crucial, step leading to thrombosis. Little is known about the effects of MMP-2 on platelet activation and adhesion under flow conditions. We studied the effect of MMP-2 on shear-dependent platelet activation using the O'Brien filtration system, and on platelet deposition using a parallel-plate perfusion chamber. Preincubation of human whole blood with active MMP-2 (50 ng/ml, i.e. 0.78 nM) shortened filter closure time (from 51.8 ± 3.6 sec to 40 ± 2.7 sec, p<0.05) and increased retained platelets (from 72.3 ± 2.3% to 81.1 ± 1.8%, p<0.05) in the O'Brien system, an effect prevented by a specific MMP-2 inhibitor. High shear stress induced the release of MMP-2 from platelets, while TIMP-2 levels were not significantly reduced, therefore, the MMP-2/TIMP-2 ratio increased significantly showing enhanced MMP-2 activity. Preincubation of whole blood with active MMP-2 (0.5 to 50 ng/ml, i.e 0.0078 to 0.78 nM) increased dose-dependently human platelet deposition on collagen under high shear-rate flow conditions (3000 sec⁻¹) (maximum +47.0 ± 11.9%, p<0.05, with 50 ng/ml), while pre-incubation with a MMP-2 inhibitor reduced platelet deposition. In real-time microscopy studies, increased deposition of platelets on collagen induced by MMP-2 started 85 sec from the beginning of perfusion, and was abolished by a GPIIb/IIIa antagonist, while MMP-2 had no effect on platelet deposition on fibrinogen or VWF. Confocal microscopy showed that MMP-2 enhances thrombus volume (+20.0 ± 3.0% vs control) rather than adhesion. In conclusion, we show that MMP-2 potentiates shear-induced platelet activation by enhancing thrombus formation.


Assuntos
Colágeno/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Trombose/metabolismo , Animais , Plaquetas/citologia , Relação Dose-Resposta a Droga , Fibrinogênio/química , Humanos , Camundongos , Camundongos Knockout , Microscopia , Microscopia Confocal , Adesividade Plaquetária , Proteínas Recombinantes/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de von Willebrand/metabolismo
19.
Br J Haematol ; 171(5): 845-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456374

RESUMO

Most circulating von Willebrand factor (VWF) is normally inactive and incapable of binding platelets, but numerous disorders may modify the proportion of active VWF. We explored active VWF levels in patients with von Willebrand disease (VWD) whose VWF had a higher affinity for platelet glycoprotein (GP)Ib, but different susceptibilities to ADAMTS13 and multimer patterns (9 patients lacking large multimers, 10 with a normal pattern); 12 patients with VWF C2362F and R1819_C1948delinsS mutations, which make VWF resistant to ADAMTS13 were also studied. Type 2B patients with abnormal or normal multimers had significantly more active VWF (3·33 ± 1·6 and 3·74 ± 0·74, respectively; normal 0·99 ± 0·23). The type of VWF mutation influenced VWF activation: V1316M was associated with the highest levels in patients with abnormal multimers, and R1341W in those with normal multimers. Pregnancy induced gradually rising active VWF levels and declining platelet counts in one type 2B VWD patient without large multimers. Active VWF levels dropped significantly in patients homozygous for the C2362F mutation or heterozygous for R1819_C1948delinsS mutations (0·2 ± 0·03 and 0·23 ± 0·1, respectively), and less in cases heterozygous for the VWF C2362F mutation (0·55 ± 0·17). We demonstrate that VWF may be more or less activated, with or without any direct involvement of the A1 domain, and regardless of ADAMTS13.


Assuntos
Proteínas ADAM/fisiologia , Mutação/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Doenças de von Willebrand/genética , Fator de von Willebrand/metabolismo , Proteína ADAMTS13 , Desamino Arginina Vasopressina/farmacologia , Feminino , Hemostáticos/farmacologia , Heterozigoto , Homozigoto , Humanos , Agregação Plaquetária/genética , Contagem de Plaquetas , Gravidez , Complicações Hematológicas na Gravidez/genética , Trombocitopenia/genética , Fator de von Willebrand/genética
20.
Science ; 350(6256): 78-82, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26430117

RESUMO

Despite decades of study, the structures adopted to accommodate an excess proton in water and the mechanism by which they interconvert remain elusive. We used ultrafast two-dimensional infrared (2D IR) spectroscopy to investigate protons in aqueous hydrochloric acid solutions. By exciting O-H stretching vibrations and detecting the spectral response throughout the mid-IR region, we observed the interaction between the stretching and bending vibrations characteristic of the flanking waters of the Zundel complex, [H(H2O)2](+), at 3200 and 1760 cm(-1), respectively. From time-dependent shifts of the stretch-bend cross peak, we determined a lower limit on the lifetime of this complex of 480 femtoseconds. These results suggest a key role for the Zundel complex in aqueous proton transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...