Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586118

RESUMO

The advent of microarray and second generation sequencing technology has revolutionized the field of molecular biology, allowing researchers to quantitatively assess transcriptomic and epigenomic features in a comprehensive and cost-efficient manner. Moreover, technical advancements have pushed the resolution of these sequencing techniques to the single cell level. As a result, the bottleneck of molecular biology research has shifted from the bench to the subsequent omics data analysis. Even though most methodologies share the same general strategy, state-of-the-art literature typically focuses on data type specific approaches and already assumes expert knowledge. Here, however, we aim at providing conceptual insight in the principles of genome-wide quantitative transcriptomic and epigenomic (including open chromatin assay) data analysis by describing a generic workflow. By starting from a general framework and its assumptions, the need for alternative or additional data-analytical solutions when working with specific data types becomes clear, and are hence introduced. Thus, we aim to enable readers with basic omics expertise to deepen their conceptual and statistical understanding of general strategies and pitfalls in omics data analysis and to facilitate subsequent progression to more specialized literature.

2.
Mol Plant Pathol ; 25(1): e13424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279847

RESUMO

The phenylalanine ammonia-lyase (PAL) enzyme catalyses the conversion of l-phenylalanine to trans-cinnamic acid. This conversion is the first step in phenylpropanoid biosynthesis in plants. The phenylpropanoid pathway produces diverse plant metabolites that play essential roles in various processes, including structural support and defence. Previous studies have shown that mutation of the PAL genes enhances disease susceptibility. Here, we investigated the functions of the rice PAL genes using 2-aminoindan-2-phosphonic acid (AIP), a strong competitive inhibitor of PAL enzymes. We show that the application of AIP can significantly reduce the PAL activity of rice crude protein extracts in vitro. However, when AIP was applied to intact rice plants, it reduced infection of the root-knot nematode Meloidogyne graminicola. RNA-seq showed that AIP treatment resulted in a rapid but transient upregulation of defence-related genes in roots. Moreover, targeted metabolomics demonstrated higher levels of jasmonates and antimicrobial flavonoids and diterpenoids accumulating after AIP treatment. Furthermore, chemical inhibition of the jasmonate pathway abolished the effect of AIP on nematode infection. Our results show that disturbance of the phenylpropanoid pathway by the PAL inhibitor AIP induces defence in rice against M. graminicola by activating jasmonate-mediated defence.


Assuntos
Oryza , Oxilipinas , Tylenchoidea , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Oryza/genética , Oryza/metabolismo , Tylenchoidea/fisiologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA