Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672885

RESUMO

Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain's circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of orange peels by different lactic acid bacteria (LAB) strains and its impact on phenolic composition and antioxidant activity. Three different LAB strains, two Lactiplantibacillus plantarum, and one Levilactobacillus brevis were utilized. The phenolic compounds were measured by HPLC-ESI-TOF-MS, and antioxidant activity was assessed using DPPH and ABTS methods. The growth of the LAB strains varied, showing initial increases followed by gradual declines, with strain-specific patterns observed. Medium acidification occurred during fermentation. A phenolic analysis revealed an 11% increase in phenolic acids in peels fermented by La. plantarum CECT 9567-C4 after 24 h, attributed to glycosylation by LAB enzymes. The flavonoid content exhibited diverse trends, with Le. brevis showing an 8% increase. The antioxidant assays demonstrated strain- and time-dependent variations. Positive correlations were found between antioxidant activity and total phenolic compounds. The results underscore the importance of bacterial selection and fermentation time for tailored phenolic composition and antioxidant activity in orange peel extracts. LAB fermentation, particularly with La. plantarum CECT 9567 and Le. brevis, holds promise for enhancing the recovery of phenolic compounds and augmenting antioxidant activity in orange peels, suggesting potential applications in food and beverage processing.

2.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829856

RESUMO

The growing global consumption of avocados, associated with contents including bioactive compounds with numerous health-promoting properties, is producing a large amount of agro wastes around the world. Different management approaches are available for the recovery of bioactive compounds from wastes as potential ingredients for use in the production of functional foods and nutraceuticals. Lactic acid fermentation can be used to exploit nutritional potential and add value to agro wastes. In this study, fermentations with lactic acid bacteria were carried out in avocado leaves, and the total phenolic content and the antioxidant activity were determined by DPPH and FRAP assays from hydroalcoholic extracts obtained from fermented avocado leaves. Fifteen new phenolic compounds were identified for the first time in avocado leaves by HPLC-ESI-TOF-MS. L. plantarum CECT 748T and P. pentosaceus CECT 4695T showed the highest antioxidant activity. The sum of phenolic compounds was increased by 71, 62, 55 and 21% in fermentations with P. pentosaceus CECT 4695T, L. brevis CECT 5354, P. acidilactici CECT 5765T and L. plantarum CECT 9567, respectively, while it was reduced in the fermentation with L. plantarum 748T by 21% as demonstrated by HPLC-ESI-TOF-MS. Biotransformations induced by bacterial metabolism modified the phenolic compound profile of avocado leaves in a strain-specific-dependent manner. P. pentosaceus CECT 4695T significantly increased kaempferol, P. pentosaceus 4695T, L. brevis 5354 and L. plantarum 9567 increased rutin, and dihydro-p-coumaric acid was increased by the five selected lactic acid bacteria. Total flavonoids were highly increased after fermentations with the five selected lactic acid bacteria but flavonoid glucosides were decreased by L. plantarum 748T, which was related to its higher antioxidant activity. Our results suggest that lactic acid bacteria led the hydrolysis of compounds by enzymatic activity such as glycosidases or decarboxylase and the release of phenolics bound to the plant cell wall, thus improving their bioavailability.

3.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326208

RESUMO

A sonotrode ultrasound-assisted extraction of phenolic compounds from olive leaves has been developed using a Box-Behnken design to optimize the effects of solvent composition and ultrasound parameters. The determination of single phenolic compounds was performed by HPLC-MS and the highest recovery in total compounds, oleuropein and hydroxytyrosol was achieved using EtOH/H2O (55:45, v/v), 8 min and 100% of amplitude. The optimal conditions were applied on leaves from seven olive cultivars grown under the same conditions and the results were compared with those found by using a conventional ultrasonic bath, obtaining no statistical differences. Moreover, antioxidant activity by FRAP, DPPH and ABTS in these olive leaf extracts was evaluated and they exhibited a significant correlation with oleuropein and total phenolic content. All cultivars of olive leaf extracts were found to be active against S. aureus and methicillin-resistant S. aureus with minimum bactericidal concentration (MBC) values) that ranged from 5.5 to 22.5 mg mL-1. No extracts showed antimicrobial activity against C. albicans. The percentages of mycelium reduction in B. cinerea ranged from 2.2 and 18.1%. Therefore, sonotrode could be considered as an efficient and fast extraction technique that could be easily scaled-up at industrial level, thus allowing for olive leaves to be revalorized.

4.
Biology (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34827085

RESUMO

In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.

5.
Arch Microbiol ; 201(3): 409-414, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30759265

RESUMO

Lactobacillus plantarum C4 (CECT 9567) was isolated from kefir and has been extensively studied because of its probiotic properties. Here we report the genome sequence of this strain. The genome consists of 3,221,350 bp, and contains 3058 CDSs with an average G + C content of 44.5%. The genome harbors genes encoding the AraC-family transcription regulator, the penicillin-binding protein Pbp2A, and the Na+/H+ antiporter NapA3, which have important roles in the survival of lactobacilli in the gastrointestinal tract. Also, the genome encodes the catalase KatE, NADH peroxidase and glutathione peroxidase, which enable anaerobic respiration, and a nitrate reductase complex, which enable anaerobic respiration. Additionally, genes encoding plantaricins and sactipeptides, and genes involved in the use of fructooligosaccharides and in the production of butyric acid were also identified. BLASTn analysis revealed that 91.4% of CDSs in C4 genome aligned with those of the reference strain L. plantarum WCFS1, with a mean identity of 98.96%. The genome information of L. plantarum C4 provides the basis for understanding the probiotic properties of C4 and to consider its use as a potential component of functional foods.


Assuntos
Genoma Bacteriano/genética , Kefir/microbiologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/isolamento & purificação , Proteínas de Bactérias/genética , Composição de Bases/genética , Sequência de Bases , Lactobacillus plantarum/classificação , Lactobacillus plantarum/metabolismo , Probióticos , Análise de Sequência de DNA
6.
Res Microbiol ; 166(8): 626-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272025

RESUMO

Lactobacillus plantarum C4, previously isolated from kefir and characterized as a potential probiotic strain, was tested for its protective and immunomodulatory capacity in a murine model of yersiniosis. The inoculation of BALB/c mice with a low pathogenicity serotype O9 strain of Yersinia enterocolitica results in a prolonged intestinal infection with colonization of Peyer's patches. Pretreatment with C4 was without effect on fecal excretion of yersiniae, but shortened the colonization of Peyer's patches. This protective effect was associated with pro-inflammatory status in the intestinal mucosa (TNF-α production in infected mice was increased by C4) and an increase in total IgA secretion. At a systemic level, C4 did not promote a pro-inflammatory response, although production of the immunoregulatory cytokine IFN-γ was enhanced. These findings suggest that L. plantarum C4 can increase resistance to intestinal infections through its immunomodulatory activity.


Assuntos
Produtos Fermentados do Leite/microbiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/fisiologia , Probióticos , Yersiniose/prevenção & controle , Yersinia enterocolitica , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Imunoglobulina A Secretora/imunologia , Imunomodulação , Interferon gama/sangue , Interferon gama/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillus plantarum/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Fator de Necrose Tumoral alfa/imunologia , Yersiniose/imunologia , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/imunologia
7.
Rev. peru. biol. (Impr.) ; 18(2): 153-158, ago. 2011. tab, graf
Artigo em Inglês | LIPECS | ID: biblio-1111386

RESUMO

Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus have been recognized as the bacteria that are involved in the inflammatory process of acne, while oxidants and antioxidants are involved in the repair of cutaneous tissue affected. In this study an evaluation was made of the antibacterial effect by the agar diffusion and broth dilution method, the cytoprotective and antioxidant effect on 3T3 dermic fibroblast cells, treated with hydrogen peroxide and the scavenging capacity of free radicals was determined by the 2, 2-diphenyl-l-picrylhydrazyl (DPPH) method as well as the Reducing Power of the ethanolic extracts of the leaves of the Machaerium floribundum. Minimal bactericidal concentrations (MBC) were obtained against Propionibacterium acnes and Staphylococcus aureus of 5 mg/mL and 2 mg/mL, respectively. A cytoprotective effect of 111% was observed over the cellular viability of the fibroblasts at 10 µg/mL and an antioxidant effect of 92% over the viability of the fibroblasts treated with hydrogen peroxide at 25 µg/mL. A stimulation of 24% growth of fibroblasts at 50 µg/mL was evidenced. On the other hand a 93% scavenging activity of the DPPH free radical was shown for 100 µg/mL with a CI50 of 34 µg/mL. The reducing power was evidenced to be dependent on the concentration. The results obtained indicated that the ethanolic extract of Machaerium floribundum shows a good antibacterial activity against bacteria that induce acne and a high potential for scavenging of free radicals at relatively low concentrations.


Propionibacterium acnes, Staphylococcus epidermidis y Staphylococcus aureus han sido reconocidas como las bacterias involucradas en el proceso inflamatorio del acné, mientras que oxidantes y antioxidantes han sido implicados en la reparación del tejido cutáneo afectado. El presente estudio evaluó el efecto antibacteriano por el método de difusión en agar y dilución en caldo; el efecto citoprotector y antioxidante sobre células de fibroblastos dérmicos 3T3, tratadas con peróxido de hidrogeno; se determinó la capacidad secuestrante de radicales libres por el método del 2,2-difenil-2-picrihidracil (DPPH) y el poder reductor de los extractos etanólicos de las hojas de Machaerium floribundum. El extracto mostro una CMB de 5mg/mL y 2mg/mL para P. acnes y S. aureus, respectivamente. Se observó un efecto citoprotector sobre la viabilidad celular de los fibroblastos de 111% a 10 µg/mL y antioxidante mostrado sobre la viabilidad de los fibroblastos tratados con peróxido de hidrogeno de 92% a 25 µg/mL. Se evidencio estimulación del crecimiento de fibroblastos de 24% a 50 µg/mL. Por otra parte se mostró actividad secuestrante del radical libre DPPH de 93% a 100 µg/mL, con una CI50 34 µg/mL. El poder reductor evidencio ser dependiente de la concentración. Los resultados indicaron que el extracto etanólico de Machaerium floribundum presenta una buena actividad antibacteriana contra las bacterias que inducen el acné y un alto potencial secuestrante de radicales libres a concentraciones relativamente bajas.


Assuntos
Acne Vulgar/terapia , Antibacterianos , Antioxidantes , Fabaceae , Propionibacterium acnes , Staphylococcus epidermidis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...