Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(2-1): 024303, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723790

RESUMO

The contact process is an emblematic model of a nonequilibrium system, containing a phase transition between inactive and active dynamical regimes. In the epidemiological context, the model is known as the susceptible-infected-susceptible model, and it is widely used to describe contagious spreading. In this work, we demonstrate how accurate and efficient representations of the full probability distribution over all configurations of the contact process on a one-dimensional chain can be obtained by means of matrix product states (MPSs). We modify and adapt MPS methods from many-body quantum systems to study the classical distributions of the driven contact process at late times. We give accurate and efficient results for the distribution of large gaps, and illustrate the advantage of our methods over Monte Carlo simulations. Furthermore, we study the large deviation statistics of the dynamical activity, defined as the total number of configuration changes along a trajectory, and investigate quantum-inspired entropic measures, based on the second Rényi entropy.

2.
Entropy (Basel) ; 20(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-33265828

RESUMO

Models can be simple for different reasons: because they yield a simple and computationally efficient interpretation of a generic dataset (e.g., in terms of pairwise dependencies)-as in statistical learning-or because they capture the laws of a specific phenomenon-as e.g., in physics-leading to non-trivial falsifiable predictions. In information theory, the simplicity of a model is quantified by the stochastic complexity, which measures the number of bits needed to encode its parameters. In order to understand how simple models look like, we study the stochastic complexity of spin models with interactions of arbitrary order. We show that bijections within the space of possible interactions preserve the stochastic complexity, which allows to partition the space of all models into equivalence classes. We thus found that the simplicity of a model is not determined by the order of the interactions, but rather by their mutual arrangements. Models where statistical dependencies are localized on non-overlapping groups of few variables are simple, affording predictions on independencies that are easy to falsify. On the contrary, fully connected pairwise models, which are often used in statistical learning, appear to be highly complex, because of their extended set of interactions, and they are hard to falsify.

3.
Phys Rev E ; 96(3-1): 032130, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347031

RESUMO

We investigate the nonequilibrium response of quasiperiodic systems to boundary driving. In particular, we focus on the Aubry-André-Harper model at its metal-insulator transition and the diagonal Fibonacci model. We find that opening the system at the boundaries provides a viable experimental technique to probe its underlying fractality, which is reflected in the fractal spatial dependence of simple observables (such as magnetization) in the nonequilibrium steady state. We also find that the dynamics in the nonequilibrium steady state depends on the length of the chain chosen: generic length chains harbour qualitatively slower transport (different scaling exponent) than Fibonacci length chains, which is in turn slower than in the closed system. We conjecture that such fractal nonequilibrium steady states should arise in generic driven critical systems that have fractal properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...