Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(34): 12056-12067, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815954

RESUMO

Gold intermetallic chemistry is very rich, covering different classes of compounds ranging from the Hume-Rothery to Zintl phases to polar intermetallics to quasicrystals. Au's relativistic effects are frequently mentioned as responsible for the peculiar structural and physical properties of its compounds, nonetheless the aspects of chemical bonding are far to be clearly understood. In this work, the La-Au-Mg system was targeted for the discovery of new gold intermetallics and their structural and chemical bonding characterization. Studies on solid state interactions resulted in the construction of a partial La-Au-Mg isothermal section at 400 °C. The high reactivity between the constituents is reflected by the formation of five intermetallic compounds in the concentration range of less than 50 at% of Au. A complete crystallographic study was conducted for four of them, namely La1.82Au3+xMg14.36-x (0 ≤ x ≤ 0.90, hP42-3.64-CeMg10.3), La3Au4-xMg12+x (0 ≤ x ≤ 0.75, hP38-Gd3Ru4Al12), LaAuMg2 (oS16-MgCuAl2) and LaAu1+xMg1-x (0 ≤ x ≤ 0.15, hP9-ZrNiAl). A unifying description based on the different stacking sequences of equal slabs along the c-axis is proposed for these intermetallics. Chemical bonding in LaAuMg2 was studied by following the position space approach and including relativistic effects. Among the peculiarities of this LaMg2Au auride, there are two-atomic La-Au bonds showing a classical polar covalent character and that form distorted hexagonal planar layers and multi-atomic bonds involving Mg species. One of these is interpreted as a Mg-Mg bond supported by the neighbouring La and Au atoms, explaining the Mg reduced oxidation state (close to +1) in this compound.

2.
J Biomed Mater Res A ; 101(3): 704-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22941918

RESUMO

Manganese and zinc were selected as alloying elements to develop a Mg-based ternary alloy for biomedical applications, taking into account the good biocompatibility of these metals. The microstructures of Mg-Zn-Mn alloys containing 0.5 or 1.0 mass% of manganese and 1.0 or 1.5 mass% of zinc were investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Their corrosion properties were assessed by means of potentiodynamic polarization and electrochemical impedance spectroscopy measurements performed in Ringer's physiological solution that simulates bodily fluids. All tested samples are two-phase alloys formed by a Mg-based matrix, consisting of a Mg-Zn-Mn solid solution, and a Mg-Zn binary phase. The electrochemical results show an improvement of the corrosion behavior of the investigated alloys with increasing Zn and Mn content. This is attributed to the formation of a partially protective Mg(OH)(2) surface film whose protective capabilities are increased by the alloying elements. The reduced influence of the Mg-Zn intermetallic compound on the corrosion rate of Mg-Zn-Mn alloys in the presence of a partially protective surface layer can be ascribed to an increasing resistance between the Mg-Zn-Mn solid solution and the second phase, thereby decreasing the effective driving force for microgalvanic corrosion. Owing to its highest corrosion protective ability, the Mg-1.5Zn-1Mn alloy is a promising candidate for the development of degradable implants, such as screws, plates, and rods.


Assuntos
Ligas/química , Magnésio/química , Manganês/química , Teste de Materiais , Zinco/química , Corrosão , Potenciometria , Espectroscopia por Absorção de Raios X
3.
J Mater Sci Mater Med ; 21(4): 1091-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20020186

RESUMO

The successful applications of magnesium-based alloys as biodegradable orthopedic implants are mainly inhibited due to their high degradation rates in physiological environment. This study examines the bio-corrosion behaviour of Mg-2Zn-0.2X (X = Ca, Mn, Si) alloys in Ringer's physiological solution that simulates bodily fluids, and compares it with that of AZ91 magnesium alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed a better corrosion behaviour of AZ91 alloy with respect to Mg-2Zn-0.2Ca and Mg-2Zn-0.2Si alloys. On the contrary, enhanced corrosion resistance was observed for Mg-2Zn-0.2Mn alloy compared to the AZ91 one: Mg-2Zn-0.2Mn alloy exhibited a four-fold increase in the polarization resistance than AZ91 alloy after 168 h exposure to the Ringer's physiological solution. The improved corrosion behaviour of the Mg-2Zn-0.2Mn alloy with respect to the AZ91 one can be ascribed to enhanced protective properties of the Mg(OH)(2) surface layer. The present study suggests the Mg-2Zn-0.2Mn alloy as a promising candidate for its applications in degradable orthopedic implants, and is worthwhile to further investigate the in vivo corrosion behaviour as well as assessed the mechanical properties of this alloy.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Magnésio/química , Zinco/química , Materiais Biocompatíveis/metabolismo , Tecnologia Biomédica/instrumentação , Tecnologia Biomédica/métodos , Líquidos Corporais/metabolismo , Líquidos Corporais/fisiologia , Cálcio/química , Materiais Revestidos Biocompatíveis , Corrosão , Manganês/química , Teste de Materiais , Modelos Biológicos , Próteses e Implantes , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...