Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(11)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999511

RESUMO

Snakebite envenoming is one of the most significantly neglected tropical diseases in the world. The lack of diagnosis/prognosis methods for snakebite is one of our motivations to develop innovative technological solutions for Brazilian health. The objective of this work was to evaluate the protein and metallic ion composition of Crotalus durissus terrificus, Bothrops jararaca, B. alternatus, B. jararacussu, B. moojeni, B. pauloensis, and Lachesis muta muta snake venoms. Brazilian snake venoms were subjected to the shotgun proteomic approach using mass spectrometry, and metal ion analysis was performed by atomic spectrometry. Shotgun proteomics has shown three abundant toxin classes (PLA2, serine proteases, and metalloproteinases) in all snake venoms, and metallic ions analysis has evidenced that the Cu2+ ion is present exclusively in the L. m. muta venom; Ca2+ and Mg2+ ions have shown a statistical difference between the species of Bothrops and Crotalus genus, whereas the Zn2+ ion presented a statistical difference among all species studied in this work. In addition, Mg2+ ions have shown 42 times more in the C. d. terrificus venom when compared to the average concentration in the other genera. Though metal ions are a minor fraction of snake venoms, several venom toxins depend on them. We believe that these non-protein fractions are capable of assisting in the development of unprecedented diagnostic devices for Brazilian snakebites.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Mordeduras de Serpentes/diagnóstico , Brasil , Proteômica , Venenos de Serpentes , Íons , Venenos de Crotalídeos/química
2.
J Proteomics ; 269: 104742, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36174952

RESUMO

Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 µg or 5.0 µg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30  minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Adiponectina , Animais , Apolipoproteína A-I , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Edema , Fator XII , Camundongos , Plasma/química , Proteoma/análise , Proteína Amiloide A Sérica , Venenos de Serpentes , Vitamina K
3.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136550

RESUMO

The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body's system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.


Assuntos
Bothrops , Venenos de Crotalídeos , Trombose , Animais , Venenos de Crotalídeos/toxicidade , Edema/induzido quimicamente , Fator IX , Subunidades de Hemoglobina , Inflamação , Lipídeos , Camundongos , Peroxirredoxinas , Plasma , Proteoma , Tromboinflamação
4.
Toxicon ; 213: 27-42, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405203

RESUMO

Bothrops leucurus is considered as a snake of medical interest in the State of Bahia, Brazil. However, so far, there are no studies that provide a refined mapping of the composition of this venom. The aim of this work was to better understand the protein composition of B. leucurus snake venom and to isolate and biologically characterize the most abundant toxin, a basic PLA2-like. Shotgun proteomics approach identified 137 protein hits in B. leucurus venom subdivided into 19 protein families. The new basic PLA2-like toxin identified was denominated Bleu-PLA2-like, it and other proteoforms represents about 25% of the total proteins in the venom of B. leucurus and induces myotoxicity, inflammation and muscle damage. Immunoreactivity assays demonstrated that B. leucurus venom is moderately recognized by bothropic and crotalic antivenoms, and on the other hand, Bleu-PLA2-like and its proteoforms are poorly recognized. Our findings open doors for future studies in order to assess the systemic effects caused by this snake venom in order to better understand the toxinological implications of this envenomation and, consequently, to assist in the clinical treatment of victims.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Antivenenos/farmacologia , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2/metabolismo , Venenos de Serpentes/metabolismo , Venenos de Serpentes/toxicidade
5.
Toxins (Basel) ; 13(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34941689

RESUMO

Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention-during the last century-to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.


Assuntos
Desenvolvimento de Medicamentos , Toxinas Biológicas/toxicidade , Peçonhas/toxicidade , Animais , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29209361

RESUMO

BACKGROUND: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. METHODS: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. RESULTS: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. CONCLUSION: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in ß and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...