Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38739319

RESUMO

Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB. Herein, a lipid-based magnetic nanocarrier prepared by a low-energy method is first described. Magnetic nanocapsules with a hydrodynamic diameter of 256.7 ± 8.5 nm (polydispersity index: 0.089 ± 0.034) and a ξ-potential of -30.4 ± 0.3 mV were obtained. Transmission electron microscopy-energy dispersive X-ray spectroscopy analysis revealed efficient encapsulation of iron oxide nanoparticles within the oily core of the nanocapsules. Both thermogravimetric analysis and phenanthroline-based colorimetric assay showed that the iron oxide percentage in the final formulation was 12 wt.%, in agreement with vibrating sample magnetometry analysis, as the specific saturation magnetization of the magnetic nanocapsules was 12% that of the bare iron oxide nanoparticles. Magnetic nanocapsules were non-toxic in the range of 50-300 µg/mL over 72 h against both the human cerebral endothelial hCMEC/D3 and Human Brain Vascular Pericytes cell lines. Interestingly, higher uptake of magnetic nanocapsules in both cell types was evidenced in the presence of an external magnetic field than in the absence of it after 24 h. This increase in nanocapsules uptake was also evidenced in pericytes after only 3 h. Altogether, these results highlight the potential for magnetic targeting to the BBB of our formulation.

2.
Adv Healthc Mater ; : e2304331, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509761

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.

3.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051559

RESUMO

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia , Proteômica , Glioblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/patologia , Membrana Celular/patologia , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral
4.
APL Bioeng ; 7(3): 036103, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37521177

RESUMO

In recent years, the need for highly predictive brain cancer models to test new anticancer compounds and experimental therapeutic approaches has significantly increased. Realistic in vitro brain tumor-on-a-chip platforms would allow a more accurate selection of valid candidate drugs and nanomedicines, therefore alleviating the economic and ethical issues of unsuccessful studies in vivo. Here, we present a multi-functional self-assembled brain tumor-on-a-chip model characterized by 3D glioma cultures interfaced both to nonmalignant brain cells of the peritumoral niche and to a 3D-real-scale blood-brain barrier (BBB) microfluidic system. This platform allowed us to screen multiple features, such as BBB crossing capabilities, apoptotic efficacy against GBM cells, and side effects on nonmalignant brain cells of a promising anticancer drug, nutlin-3a, which is fundamental for the treatment of brain cancer.

5.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312240

RESUMO

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Nanopartículas/química , Membrana Celular , Campos Magnéticos , Neoplasias da Próstata/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química
6.
Adv Healthc Mater ; 12(19): e2203120, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058273

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Humanos , Glioblastoma/patologia , Hipertermia Induzida/métodos , Resultado do Tratamento , Fenômenos Magnéticos , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
7.
Adv Mater ; 35(18): e2210034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36739591

RESUMO

Driven by regulatory authorities and the ever-growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof-of-concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water-rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near-infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.


Assuntos
Epiderme , Pele , Animais , Camundongos , Pele/diagnóstico por imagem , Ultrassonografia/métodos , Silicones/química
8.
Nanoscale ; 14(36): 13292-13307, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36063033

RESUMO

Upon coming into contact with the biological environment, nanostructures are immediately covered by biomolecules, particularly by proteins forming the so-called "protein corona" (PC). The phenomenon of PC formation has gained great attention in recent years due to its implication in the use of nanostructures in biomedicine. In fact, it has been shown that the formation of the PC can impact the performance of nanostructures by reducing their stability, causing aggregation, increasing their toxicity, and providing unexpected and undesired nanostructure-cell interactions. In this work, we decided to study for the first time the formation and the evolution of PC on the surface of nanostructured lipid carriers loaded with superparamagnetic iron oxide nanoparticles, before and after the crossing of an in vitro model of the blood-brain barrier (BBB). Combining confocal microscopy, direct STochastic Optical Reconstruction Microscopy (dSTORM), and proteomic analysis, we were able to carry out a complete analysis of the PC formation and evolution. In particular, we highlighted that PC formation is a fast process, being formed around particles even after just 1 min of exposure to fetal bovine serum. Moreover, PC formed around particles is extremely heterogeneous: while some particles have no associated PC at all, others are completely covered by proteins. Lastly, the interaction with an in vitro BBB model strongly affects the PC composition: in particular, a large amount of the proteins forming the initial PC is lost after the BBB passage and they are partially replaced by new proteins derived from both the brain endothelial cells and the cell culture medium. Altogether, the obtained data could potentially provide new insights into the design and fabrication of lipid nanostructures for the treatment of central nervous system disorders.


Assuntos
Nanopartículas , Nanoestruturas , Coroa de Proteína , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lipídeos , Espectrometria de Massas , Microscopia Confocal , Nanopartículas/química , Coroa de Proteína/química , Proteômica , Soroalbumina Bovina/metabolismo
9.
Biotechnol Bioeng ; 119(7): 1965-1979, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383894

RESUMO

In the past decades, bone tissue engineering developed and exploited many typologies of bioreactors, which, besides providing proper culture conditions, aimed at integrating those bio-physical stimulations that cells experience in vivo, to promote osteogenic differentiation. Nevertheless, the highly challenging combination and deployment of many stimulation systems into a single bioreactor led to the generation of several unimodal bioreactors, investigating one or at mostly two of the required biophysical stimuli. These systems miss the physiological mimicry of bone cells environment, and often produced contrasting results, thus making the knowledge of bone mechanotransduction fragmented and often inconsistent. To overcome this issue, in this study we developed a perfusion and electroactive-vibrational reconfigurable stimulation bioreactor to investigate the differentiation of SaOS-2 bone-derived cells, hosting a piezoelectric nanocomposite membrane as cell culture substrate. This multimodal perfusion bioreactor is designed based on a numerical (finite element) model aimed at assessing the possibility to induce membrane nano-scaled vibrations (with ~12 nm amplitude at a frequency of 939 kHz) during perfusion (featuring 1.46 dyn cm-2 wall shear stress), large enough for inducing a physiologically-relevant electric output (in the order of 10 mV on average) on the membrane surface. This study explored the effects of different stimuli individually, enabling to switch on one stimulation at a time, and then to combine them to induce a faster bone matrix deposition rate. Biological results demonstrate that the multimodal configuration is the most effective in inducing SaOS-2 cell differentiation, leading to 20-fold higher collagen deposition compared to static cultures, and to 1.6- and 1.2-fold higher deposition than the perfused- or vibrated-only cultures. These promising results can provide tissue engineering scientists with a comprehensive and biomimetic stimulation platform for a better understanding of mechanotransduction phenomena beyond cells differentiation.


Assuntos
Osteogênese , Engenharia Tecidual , Reatores Biológicos , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Mecanotransdução Celular , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
ACS Appl Mater Interfaces ; 14(14): 15927-15941, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352893

RESUMO

Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).


Assuntos
Nanopartículas , Taninos , Antioxidantes/química , Ferro/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Taninos/farmacologia
11.
Acta Biomater ; 139: 218-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33894347

RESUMO

Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, represents the most aggressive primary brain tumor. The complex genetic heterogeneity, the acquired drug resistance, and the presence of the blood-brain barrier (BBB) limit the efficacy of the current therapies, with effectiveness demonstrated only in a small subset of patients. To overcome these issues, here we propose an anticancer approach based on ultrasound-responsive drug-loaded organic piezoelectric nanoparticles. This anticancer nanoplatform consists of nutlin-3a-loaded ApoE-functionalized P(VDF-TrFE) nanoparticles, that can be remotely activated with ultrasound-based mechanical stimulations to induce drug release and to locally deliver anticancer electric cues. The combination of chemotherapy treatment with chronic piezoelectric stimulation resulted in activation of cell apoptosis and anti-proliferation pathways, induction of cell necrosis, inhibition of cancer migration, and reduction of cell invasiveness in drug-resistant GBM cells. Obtained results pave the way for the use of innovative multifunctional nanomaterials in less invasive and more focused anticancer treatments, able to reduce drug resistance in GBM. STATEMENT OF SIGNIFICANCE: Piezoelectric hybrid lipid-polymeric nanoparticles, efficiently encapsulating a non-genotoxic drug (nutlin-3a) and functionalized with a peptide (ApoE) that enhances their passage through the BBB, are proposed. Upon ultrasound stimulation, nanovectors resulted able to reduce cell migration, actin polymerization, and invasion ability of glioma cells, while fostering apoptotic and necrotic events. This wireless activation of anticancer action paves the way to a less invasive, more focused and efficient therapeutic strategy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Apoptose , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120773, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952436

RESUMO

Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. It presents a very bad prognosis with a patients' overall survival of 12-15 months; treatment failure is mainly ascribable to tumor recurrence. The development of new tools, that could help the precise detection of the tumor border, is thus an urgent need. During the last decades, different vibrational spectroscopy techniques have been developed to distinguish cancer tissue from heathy tissue; in the present work, we compared GBM cells deriving from four patients with healthy human astrocytes using Raman spectroscopy. We have shown that the region between 1000 and 1300 cm-1 is enough informative for this discrimination, indeed highlighting that peaks related to DNA/RNA and cytochrome c are increased in cancer cells. Finally, our model has been able to discriminate cancer cells from healthy cells with an average accuracy of 92.5%. We believe that this study might help to further understand which are the essential Raman peaks exploitable in the detection of cancer cells, with important perspectives under a diagnostic point of view.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Astrócitos , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Humanos , Análise Espectral Raman
13.
ACS Appl Mater Interfaces ; 13(34): 40200-40213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410709

RESUMO

For their remarkable biomimetic properties implying strong modulation of the intracellular and extracellular redox state, cerium oxide nanoparticles (also termed "nanoceria") were hypothesized to exert a protective role against oxidative stress associated with the harsh environmental conditions of spaceflight, characterized by microgravity and highly energetic radiations. Nanoparticles were supplied to proliferating C2C12 mouse skeletal muscle cells under different gravity and radiation levels. Biological responses were thus investigated at a transcriptional level by RNA next-generation sequencing. Lists of differentially expressed genes (DEGs) were generated and intersected by taking into consideration relevant comparisons, which led to the observation of prevailing effects of the space environment over those induced by nanoceria. In space, upregulation of transcription was slightly preponderant over downregulation, implying involvement of intracellular compartments, with the majority of DEGs consistently over- or under-expressed whenever present. Cosmic radiations regulated a higher number of DEGs than microgravity and seemed to promote increased cellular catabolism. By taking into consideration space physical stressors alone, microgravity and cosmic radiations appeared to have opposite effects at transcriptional levels despite partial sharing of molecular pathways. Interestingly, gene ontology denoted some enrichment in terms related to vision, when only effects of radiations were assessed. The transcriptional regulation of mitochondrial uncoupling protein 2 in space-relevant samples suggests perturbation of the intracellular redox homeostasis, and leaves open opportunities for antioxidant treatment for oxidative stress reduction in harsh environments.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Nanopartículas Metálicas/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Antioxidantes/química , Linhagem Celular , Cério/química , Radiação Cósmica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Gravitação , Camundongos , Fibras Musculares Esqueléticas/efeitos da radiação , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Proteína Desacopladora 2/metabolismo
14.
Macromol Biosci ; 21(9): e2100181, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212510

RESUMO

Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.


Assuntos
Fotoquimioterapia , Porfirinas , Clorofila/química , Clorofila/farmacologia , Nanomedicina , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química
15.
Adv Mater Technol ; 5(10): 2000540, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088902

RESUMO

The modeling of the pathological microenvironment of the central nervous system (CNS) represents a disrupting approach for drug screening for advanced therapies against tumors and neuronal disorders. The in vitro investigations of the crossing and diffusion of drugs through the blood-brain barrier (BBB) are still not completely reliable, due to technological limits in the replication of 3D microstructures that can faithfully mimic the in vivo scenario. Here, an innovative 1:1 scale 3D-printed realistic biohybrid model of the brain tumor microenvironment, with both luminal and parenchyma compartments, is presented. The dynamically controllable microfluidic device, fabricated through two-photon lithography, enables the triple co-culture of hCMEC/D3 cells, forming the internal biohybrid endothelium of the capillaries, of astrocytes, and of magnetically-driven spheroids of U87 glioblastoma cells. Tumor spheroids are obtained from culturing glioblas-toma cells inside 3D microcages loaded with superparamagnetic iron oxide nanoparticles (SPIONs). The system proves to be capable in hindering dextran diffusion through the bioinspired BBB, while allowing chemotherapy-loaded nanocarriers to cross it. The proper formation of the selective barrier and the good performance of the anti-tumor treatment demonstrate that the proposed device can be successfully exploited as a realistic in vitro model for high-throughput drug screening in CNS diseases.

16.
Mater Sci Eng C Mater Biol Appl ; 115: 111113, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600713

RESUMO

Owing to the self-renewing reactive oxygen species scavenger capability of cerium oxide nanoparticles (nanoceria), we tested in vivo radioprotective effects on stem cells and tissue regeneration using low-dose irradiated planarians as model system. We treated planarians with nanoceria or gum Arabic, as control, and we analyzed the expression of stem cell molecular markers and tissue regeneration capability, as well as cell death and DNA damage in non-irradiated and in low-dose irradiated animals. Our findings show that nanoceria increase the number of stem cells and tissue regenerative capability, and reduce cell death and DNA damage after low-dose irradiation, suggesting a protective role on stem cells.


Assuntos
Cério/farmacologia , Planárias/fisiologia , Protetores contra Radiação/farmacologia , Regeneração/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Nanopartículas , Planárias/efeitos dos fármacos , Planárias/efeitos da radiação , Radiação Ionizante , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Células-Tronco/efeitos da radiação
17.
Mater Des ; 192: 108742, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394995

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.

18.
ACS Appl Mater Interfaces ; 12(26): 29037-29055, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459082

RESUMO

Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Lisossomos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Compostos Férricos/química , Humanos , Imidazóis/química , Nanopartículas/química , Peptídeos/química , Piperazinas/química
19.
Nanoscale ; 11(44): 21227-21248, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663592

RESUMO

Aiming at finding new solutions for fighting glioblastoma multiforme, one of the most aggressive and lethal human cancer, here an in vitro validation of multifunctional nanovectors for drug delivery and hyperthermia therapy is proposed. Hybrid magnetic lipid nanoparticles have been fully characterized and tested on a multi-cellular complex model resembling the tumor microenvironment. Investigations of cancer therapy based on a physical approach (namely hyperthermia) and on a pharmaceutical approach (by exploiting the chemotherapeutic drug temozolomide) have been extensively carried out, by evaluating its antiproliferative and pro-apoptotic effects on 3D models of glioblastoma multiforme. A systematic study of transcytosis and endocytosis mechanisms has been moreover performed with multiple complimentary investigations, besides a detailed description of local temperature increments following hyperthermia application. Finally, an in-depth proteomic analysis corroborated the obtained findings, which can be summarized in the preparation of a versatile, multifunctional, and effective nanoplatform able to overcome the blood-brain barrier and to induce powerful anti-cancer effects on in vitro complex models.


Assuntos
Sistemas de Liberação de Medicamentos , Glioblastoma/terapia , Hipertermia Induzida , Nanopartículas de Magnetita , Modelos Biológicos , Temozolomida , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Temozolomida/química , Temozolomida/farmacologia
20.
Sci Rep ; 8(1): 6257, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674690

RESUMO

A nanotechnology-based approach for the inhibition of breast cancer cell proliferation is proposed. The innovative solution consists in a platform based on biocompatible piezoelectric nanoparticles able to target and remotely stimulate HER2-positive breast cancer cells. The anti-proliferative effects of the ultrasound-driven piezoelectric nanoparticle-assisted stimulation significantly reduced the proliferation by inducing the cell cycle arrest. Similarly to a low-intensity alternating electric field, chronic piezoelectric stimulation resulted able to inhibit cancer cell proliferation by upregulating the expression of the gene encoding Kir3.2 inward rectifier potassium channels, by interfering on Ca2+ homeostasis, and by affecting the organization of mitotic spindles during mitosis. The proposed platform, even if specific for HER2-positive cells, shows huge potential and versatility for the treatment of different type of cancers.


Assuntos
Neoplasias da Mama/terapia , Proliferação de Células/efeitos dos fármacos , Nanopartículas/uso terapêutico , Receptor ErbB-2/análise , Ondas Ultrassônicas , Neoplasias da Mama/patologia , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Humanos , Nanopartículas/efeitos da radiação , Nanotecnologia/métodos , Fuso Acromático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...