Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38642877

RESUMO

BACKGROUND: Tendon transfers are established techniques to regain external rotation mobility in patients suffering from an irreparable, posterosuperior massive rotator cuff tear (MRCT). Posterosuperior MRCT with intact teres minor (Type D MRCT) can lead to excessive teres minor loading to maintain external rotation. We hypothesize that tendon transfers are effective in relieving teres minor loading in Type D MRCTs. Our aim was to biomechanically assess muscle synergism with latissimus dorsi (LD-Transfer) and lower trapezius (LT-Transfer) tendon transfer during external rotation at different abduction heights. METHODS: Using musculoskeletal modeling, we analyzed and compared the moment arm, muscle torque and muscle activity between a healthy and Type D MRCT pathological model with and without the LD- or LT-Transfer at infraspinatus and teres minor insertion sites. Output measures were analyzed during external rotation at different abduction angles and 10 to 50N resistance against external rotation. We assessed its impact on teres minor loading in a Type D MRCT. Morphological variations were parameterized using the critical shoulder angle and the acromiohumeral distance to address variations among patients. RESULTS: Both transfer types reduced teres minor torque and activity significantly, reaching physiological state at 40N external resistance (p<0.001), with insertion to infraspinatus site being more effective than teres minor site (p<0.001). External rotation moment arms of LD-Transfer were larger than LT-Transfer at 90° abduction (25.1±0.8mm vs. 21.2±0.6mm, p<0.001) and vice versa at 0° abduction (17.4±0.5mm vs. 24.0±0.2mm, p<0.001). While the healthy infraspinatus was the main external rotator in all abduction angles (50-70% torque), a Type D MRCT resulted in a 70-90% increase of teres minor torque and an up to sevenfold increase in its activity leading to excessive loadings beyond 10N resistance against external rotation. Varying the critical shoulder angle and the acromiohumeral distance led to minor variations in muscle moment arm and muscle activity. CONCLUSION: We identified biomechanical efficacy of both tendon transfers in Type D MRCT regarding teres minor load relieve and superior performance of the transfers at the infraspinatus insertion site.

2.
Clin Biomech (Bristol, Avon) ; 107: 106030, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37413811

RESUMO

BACKGROUND: Compromised abduction ability after reverse shoulder arthroplasty is primarily linked to limited glenohumeral range of motion while scapulothoracic mobility can typically be maintained. Glenohumeral joint forces strongly depend on the resulting scapulohumeral rhythm, however, an association between the acting muscle and joint forces and the subject-specific scapulohumeral rhythm after reverse shoulder arthroplasty has not been established. METHODS: Eleven reverse shoulder arthroplasty patients were divided into groups of poor and excellent abduction ability. Subject-specific models were developed and scaled for each patient using existing motion capture data in AnyBody™. Shoulder muscle and joint forces were obtained using inverse dynamics calculations during shoulder abduction to 100° in the scapula plane. The scapulohumeral rhythm, the resting abduction angle and internal body forces between the outcome groups were compared using a Mann Whitney U test. FINDINGS: The mean glenohumeral and scapulothoracic contribution to overall shoulder abduction for the excellent group was on average 9.7% higher and 21.4% lower, respectively, compared to the mean of the poor group. For shoulder abduction angles between 30° and 60°, the excellent group demonstrated on average 25% higher muscle forces in the anterior deltoid which was significantly higher compared to the poor outcome patients. Scapulothoracic muscle activity did not differ significantly between the two functional groups. INTERPRETATION: Accordingly, rehabilitation strategies focusing on strengthening the anterior part of the deltoid in particular may improve clinical outcomes.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Ombro/fisiologia , Fenômenos Biomecânicos/fisiologia , Escápula/cirurgia , Escápula/fisiologia , Músculo Esquelético/cirurgia , Amplitude de Movimento Articular/fisiologia
3.
Gait Posture ; 104: 1-8, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263066

RESUMO

BACKGROUND: Previous studies have investigated the effect of either different load or different surface conditions, such as overground or treadmill walking, on human biomechanics. However, studies combining these two aspects are scarce. RESEARCH QUESTION: The purpose of this study was to quantify the difference in spatiotemporal parameters, lower extremity joint kinematics, vertical ground reaction forces (vGRF) and muscle activity between normal bodyweight (100 %BW) and 20 % increased bodyweight (120 %BW) during overground and treadmill walking. METHODS: Ten healthy young adults walked overground at self-selected speed and on an instrumented treadmill set to the overground speed. Spatiotemporal parameters, 3-dimensional lower extremity kinematics, vGRF and muscle activity were measured and compared between conditions. RESULTS: The stance phase was longer for 120 %BW than 100 %BW in both overground and treadmill walking. Further, the stance phase was longer and cadence higher in treadmill than overground walking for both load conditions. Knee flexion angles were more than 3° greater in the second half of swing in treadmill than in overground walking. The vGRF was higher for 120 %BW compared to 100 %BW on both surfaces (treadmill, first peak: +18.6 %BW; second peak: +13.5 %BW; overground, first peak: +22.2 %BW; second peak: +19.8 %BW). Differences between conditions greater than 20 % were observed in short periods during the gait cycle for vastus medialis, vastus lateralis and semitendinosus. SIGNIFICANCE: Results regarding the effects of carrying additional load using a weight vest on joint kinematics during treadmill walking may be translated to overground walking but some changes in muscle activation can be expected.


Assuntos
Marcha , Caminhada , Adulto Jovem , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Marcha/fisiologia , Extremidade Inferior/fisiologia , Músculo Quadríceps , Teste de Esforço
4.
Toxins (Basel) ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37104205

RESUMO

Local botulinum toxin (BTX-A, Botox®) injection in overactive muscles is a standard treatment in patients with cerebral palsy. The effect is markedly reduced in children above the age of 6 to 7. One possible reason for this is the muscle volume affected by the drug. Nine patients (aged 11.5; 8.7-14.5 years) with cerebral palsy GMFCS I were treated with BTX-A for equinus gait at the gastrocnemii and soleus muscles. BTX-A was administered at one or two injection sites per muscle belly and with a maximum of 50 U per injection site. Physical examination, instrumented gait analysis, and musculoskeletal modelling were used to assess standard muscle parameters, kinematics, and kinetics during gait. Magnetic resonance imaging (MRI) was used to detect the affected muscle volume. All the measurements were carried out pre-, 6 weeks post-, and 12 weeks post-BTX-A. Between 9 and 15% of the muscle volume was affected by BTX-A. There was no effect on gait kinematics and kinetics after BTX-A injection, indicating that the overall kinetic demand placed on the plantar flexor muscles remained unchanged. BTX-A is an effective drug for inducing muscle weakness. However, in our patient cohort, the volume of the affected muscle section was limited, and the remaining non-affected parts were able to compensate for the weakened part of the muscle by taking over the kinetic demands associated with gait, thus not enabling a net functional effect in older children. We recommend distributing the drug over the whole muscle belly through multiple injection sites.


Assuntos
Toxinas Botulínicas Tipo A , Paralisia Cerebral , Fármacos Neuromusculares , Criança , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Fármacos Neuromusculares/uso terapêutico , Músculo Esquelético , Marcha , Injeções Intramusculares , Espasticidade Muscular/tratamento farmacológico
5.
Front Hum Neurosci ; 17: 1127613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968787

RESUMO

Introduction: Gait analysis is increasingly used to support clinical decision-making regarding diagnosis and treatment planning for movement disorders. As a key part of gait analysis, inverse dynamics can be applied to estimate internal loading conditions during movement, which is essential for understanding pathological gait patterns. The inverse dynamics calculation uses external kinetic information, normally collected using force plates. However, collection of external ground reaction forces (GRFs) and moments (GRMs) can be challenging, especially in subjects with movement disorders. In recent years, a musculoskeletal modeling-based approach has been developed to predict external kinetics from kinematic data, but its performance has not yet been evaluated for altered locomotor patterns such as toe-walking. Therefore, the goal of this study was to investigate how well this prediction method performs for gait in children with cerebral palsy. Methods: The method was applied to 25 subjects with various forms of hemiplegic spastic locomotor patterns. Predicted GRFs and GRMs, in addition to associated joint kinetics derived using inverse dynamics, were statistically compared against those based on force plate measurements. Results: The results showed that the performance of the predictive method was similar for the affected and unaffected limbs, with Pearson correlation coefficients between predicted and measured GRFs of 0.71-0.96, similar to those previously reported for healthy adults, despite the motor pathology and the inclusion of toes-walkers within our cohort. However, errors were amplified when calculating the resulting joint moments to an extent that could influence clinical interpretation. Conclusion: To conclude, the musculoskeletal modeling-based approach for estimating external kinetics is promising for pathological gait, offering the possibility of estimating GRFs and GRMs without the need for force plate data. However, further development is needed before implementation within clinical settings becomes possible.

6.
Gait Posture ; 100: 179-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563590

RESUMO

BACKGROUND: Femoral anteversion affects the lever arm and moment-generating capacity of the hip abductors, while an increased hip internal rotation during walking was proposed to be a compensatory mechanism to restore the abductive lever arm. Children with isolated increased femoral anteversion, however, do not always present a deficit in the net hip abduction moment during gait, suggesting that a more comprehensive understanding of the effect of morphology and motion on muscle forces and moments is needed to aid clinical decision making. RESEARCH QUESTION: Are muscle contributions to hip joint moments and muscle forces altered in patients with increased femoral anteversion and internally rotated gait pattern compared to a control group of typically developing children? And how would the functional role of the muscle be altered if the patients walked straight? METHODS: This follow-up study compared patients with increased femoral anteversion (n = 42, 12.8 ± 1.9 years, femoral anteversion: 39.6 ± 6.9°) to controls (n = 9, 12.0 ± 3.0 years, femoral anteversion: 18.7 ± 4.1°). Muscle forces and moment contributions were calculated using personalized musculoskeletal models. Additionally, a hypothetical scenario, in which the gait of the controls was modelled with an anteverted femoral morphology, was used to understand what would happen if the patients walked straight. RESULTS: Gluteus medius abductive contribution was lower in patients compared to controls, despite a comparable net abduction moment around the hip. Patients presented lower muscle forces. However, if modelled to walk straight, they would require higher forces as well as a larger co-contraction of both hip internal and external rotators in the transversal plane. SIGNIFICANCE: This study suggests that patients with increased femoral anteversion walking with an internally rotated gait pattern present lower muscle forces, but when modelled to walk straight muscle forces increase. The current results provide important information to better understand this condition and improve treatment recommendations in these patients.


Assuntos
Fêmur , Marcha , Criança , Humanos , Seguimentos , Marcha/fisiologia , Caminhada , Músculo Esquelético , Articulação do Quadril , Fenômenos Biomecânicos
7.
J Orthop Res ; 41(3): 591-600, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35730475

RESUMO

The objectives of this study were to estimate pre- and postoperative lower limb kinematics and kinetics and knee intra-articular forces during gait using musculoskeletal modeling in a cohort of patients with knee osteoarthritis (OA) undergoing high tibial osteotomy (HTO), compare these to controls, and determine correlations between changes in these parameters and Knee Injury and Osteoarthritis Outcome Score (KOOS) subscores after HTO. Sixteen patients with isolated, symptomatic medial compartment knee OA completed pre- and postoperative gait analysis (mean follow-up time: 8.6 months). Sixteen age- and sex-matched asymptomatic volunteers participated as controls. Musculoskeletal modeling was used to evaluate lower limb joint moments and knee contact forces during gait. While HTO had limited influence on sagittal plane kinematics and moments, significant changes in the load distribution at the knee after HTO were observed with a lower postoperative compressive load on the medial compartment during midstance and a higher compressive load on the lateral compartment during early and late stance. Moreover, the lateral shear force in midstance was significantly lower after HTO. Changes in the external knee adduction moment (KAM) did not always coincide with reductions in the knee compressive force in the medial compartment. Biomechanical changes did not correlate with improvements in KOOS subscores. Hence, HTO effectively unloaded the medial compartment by redistributing part of the overall compressive force to the lateral compartment during gait with limited influence on gait function. The KAM may not adequately describe compartmental load magnitude or changes induced by interventions at the compartment level. Clinical trial registration: ClinicalTrials. gov Identifier-NCT02622204. Clinical significance: This study provides important evidence for changes in joint level loads after corrective osteotomy as joint preserving surgery and emphasizes the need for additional biomechanical outcomes of such interventions.


Assuntos
Osteoartrite do Joelho , Tíbia , Humanos , Tíbia/cirurgia , Articulação do Joelho , Caminhada , Extremidade Inferior , Marcha , Fenômenos Biomecânicos , Osteotomia
8.
Front Bioeng Biotechnol ; 10: 914990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733525

RESUMO

Orthopedic complications were previously reported for patients with increased femoral anteversion. A more comprehensive analysis of the influence of increased femoral anteversion on joint loading in these patients is required to better understand the pathology and its clinical management. Therefore, the aim was to investigate lower-limb kinematics, joint moments and forces during gait in adolescent patients with increased, isolated femoral anteversion compared to typically developing controls. Secondly, relationships between the joint loads experienced by the patients and different morphological and kinematic features were investigated. Patients with increased femoral anteversion (n = 42, 12.8 ± 1.9 years, femoral anteversion: 39.6 ± 6.9°) were compared to typically developing controls (n = 9, 12.0 ± 3.0 years, femoral anteversion: 18.7 ± 4.1°). Hip and knee joint kinematics and kinetics were calculated using subject-specific musculoskeletal models. Differences between patients and controls in the investigated outcome variables (joint kinematics, moments, and forces) were evaluated through statistical parametric mapping with Hotelling T2 and t-tests (α = 0.05). Canonical correlation analyses (CCAs) and regression analyses were used to evaluate within the patients' cohort the effect of different morphological and kinematic predictors on the outcome variables. Predicted compressive proximo-distal loads in both hip and knee joints were significantly reduced in patients compared to controls. A gait pattern characterized by increased knee flexion during terminal stance (KneeFlex tSt ) was significantly correlated with hip and knee forces, as well as with the resultant force exerted by the quadriceps on the patella. On the other hand, hip internal rotation and in-toeing, did not affect the loads in the joints. Based on the finding of the CCAs and linear regression analyses, patients were further divided into two subgroups based KneeFlex tSt . Patients with excessive KneeFlex tSt presented a significantly higher femoral anteversion than those with normal KneeFlex tSt . Patients with excessive KneeFlex tSt presented significantly larger quadriceps forces on the patella and a larger posteriorly-oriented shear force at the knee, compared to patients with normal KneeFlex tSt , but both patients' subgroups presented only limited differences in terms of joint loading compared to controls. This study showed that an altered femoral morphology does not necessarily lead to an increased risk of joint overloading, but instead patient-specific kinematics should be considered.

9.
Front Bioeng Biotechnol ; 10: 810560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480978

RESUMO

Toe-walking characterizes several neuromuscular conditions and is associated with a reduction in gait stability and efficiency, as well as in life quality. The optimal choice of treatment depends on a correct understanding of the underlying pathology and on the individual biomechanics of walking. The objective of this study was to describe gait deviations occurring in a cohort of healthy adult subjects when mimicking a unilateral toe-walking pattern compared to their normal heel-to-toe gait pattern. The focus was to characterize the functional adaptations of the major lower-limb muscles which are required in order to toe walk. Musculoskeletal modeling was used to estimate the required muscle contributions to the joint sagittal moments. The support moment, defined as the sum of the sagittal extensive moments at the ankle, knee, and hip joints, was used to evaluate the overall muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Compared to a normal heel-to-toe gait pattern, toe-walking was characterized by significantly different lower-limb kinematics and kinetics. The altered kinetic demands at each joint translated into different necessary moment contributions from most muscles. In particular, an earlier and prolonged ankle plantarflexion contribution was required from the soleus and gastrocnemius during most of the stance phase. The hip extensors had to provide a higher extensive moment during loading response, while a significantly higher knee extension contribution from the vasti was necessary during mid-stance. Compensatory muscular activations are therefore functionally required at every joint level in order to toe walk. A higher support moment during toe-walking indicates an overall higher muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Higher muscular demands during gait may lead to fatigue, pain, and reduced quality of life. Toe-walking is indeed associated with significantly larger muscle forces exerted by the quadriceps to the patella and prolonged force transmission through the Achilles tendon during stance phase. Optimal treatment options should therefore account for muscular demands and potential overloads associated with specific compensatory mechanisms.

10.
EFORT Open Rev ; 7(1): 26-34, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35076415

RESUMO

Overuse injuries imply the occurrence of a repetitive or an increased load on a specific anatomical segment which is unable to recover from this redundant microtrauma, thus leading to an inflammatory process of tendons, physis, bursa, or bone. Even if the aetiology is controversial, the most accepted is the traumatic one. Limb malalignment has been cited as one of the major risk factors implicated in the development of overuse injuries. Many authors investigated correlations between anatomical deviations and overuse injuries, but results appear mainly inconclusive. Establishing a causal relationship between mechanical stimuli and symptoms will remain a challenge, but 3D motion analysis, musculoskeletal, and finite element modelling may help in clarifying which are the major risk factors for overuse injuries.

11.
Comput Methods Programs Biomed ; 215: 106606, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35016083

RESUMO

BACKGROUND AND OBJECTIVE: The investigation of the biomechanical behaviour of the articular cartilage (AC) under physiological loading is important to understand the joint function and onset of pathologies. This study aimed to develop a multiscale computational modelling approach and apply the approach to investigate the time-dependant biphasic behaviour of the AC in the natural hip joint under repetitive physiological loading over 80 cycles amongst six routine activities. METHODS: A subject-specific musculoskeletal multibody dynamics (MBD) model was developed based on the anthropometry and motion capture data collected for a male subject. A corresponding FE model of the natural hip joint with biphasic AC was created based on the bone geometries exported from the MBD model. A multiscale computational modelling was then developed to couple the MBD model and the FE model and used to investigate the time-dependant biphasic behaviour of the AC under subject-specific physiological loading over 80 cycles amongst six routine activities. RESULTS: The results showed that for all the activities considered, the interstitial fluid pressure in the AC supported over 80% of the loading. The maximum values of the peak contact pressure and peak fluid pressure for the whole cycle increased firstly and then remained stable over time from the 1st cycle to the 80th cycle. At these instants, the contact areas were located at the centre region of the AC. By contrast, when the contact area was located at the edge of the AC, these peak pressures were found to increase over time for some of the activities (squat, ascending stairs, descending stairs) but decrease for the other activities (normal walking, standing up, sitting down). CONCLUSION: This study for the first time developed a multiscale computational modelling approach to couple a musculoskeletal MBD model of the body and a detailed FE model of the natural hip joint with biphasic AC, which enabled the evaluation of time-dependant biphasic behaviour of the AC under realistic physiological loading conditions. The study may have important implications in biomechanical studies of human cartilage to understand the joint function and biomechanical factors related to joint disease, and to support the development of cartilage substitution.


Assuntos
Cartilagem Articular , Fenômenos Biomecânicos , Análise de Elementos Finitos , Articulação do Quadril , Humanos , Masculino , Modelos Biológicos
12.
Front Bioeng Biotechnol ; 9: 679360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368092

RESUMO

Hip osteoarthritis may be caused by increased or abnormal intra-articular forces, which are known to be related to structural articular cartilage damage. Femoral torsional deformities have previously been correlated with hip pain and labral damage, and they may contribute to the onset of hip osteoarthritis by exacerbating the effects of existing pathoanatomies, such as cam and pincer morphologies. A comprehensive understanding of the influence of femoral morphotypes on hip joint loading requires subject-specific morphometric and biomechanical data on the movement characteristics of individuals exhibiting varying degrees of femoral torsion. The aim of this study was to evaluate hip kinematics and kinetics as well as muscle and joint loads during gait in a group of adult subjects presenting a heterogeneous range of femoral torsion by means of personalized musculoskeletal models. Thirty-seven healthy volunteers underwent a 3D gait analysis at a self-selected walking speed. Femoral torsion was evaluated with low-dosage biplanar radiography. The collected motion capture data were used as input for an inverse dynamics analysis. Personalized musculoskeletal models were created by including femoral geometries that matched each subject's radiographically measured femoral torsion. Correlations between femoral torsion and hip kinematics and kinetics, hip contact forces (HCFs), and muscle forces were analyzed. Within the investigated cohort, higher femoral antetorsion led to significantly higher anteromedial HCFs during gait (medial during loaded stance phase and anterior during swing phase). Most of the loads during gait are transmitted through the anterior/superolateral quadrant of the acetabulum. Correlations with hip kinematics and muscle forces were also observed. Femoral antetorsion, through altered kinematic strategies and different muscle activations and forces, may therefore lead to altered joint mechanics and pose a risk for articular damage. The method proposed in this study, which accounts for both morphological and kinematic characteristics, might help in identifying in a clinical setting patients who, as a consequence of altered femoral torsional alignment, present more severe functional impairments and altered joint mechanics and are therefore at a higher risk for cartilage damage and early onset of hip osteoarthritis.

13.
Front Neurol ; 12: 630435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935939

RESUMO

Background: Muscles from patients with cerebral palsy (CP) are often spastic and form contractures that limit the range of motion. Injections of botulinum toxin A (BTX) into the calf muscles are an important treatment for functional equinus; however, improvement in gait function is not always achieved. BTX is also used to test muscle weakening for risk evaluation of muscle lengthening surgery. Our aim was to assess the effect of BTX over time on calf muscle properties in pediatric CP patients with MRI. Material and Methods: Six toe-walking CP patients (mean age 11.6 years) with indication for lengthening surgery were prospectively enrolled and received BTX injections into the gastrocnemius and soleus muscles. MRI scans at 3T of the lower legs and clinical examinations were performed pre-BTX, 6 weeks (6w), and 12 weeks (12w) post-BTX. A fat-suppressed 2D multi-spin-echo sequence was used to acquire T2 maps and for segmentation. Fat fraction maps were calculated from 3D multi-echo Dixon images. Diffusion tensor imaging (DTI) with a 2D echo-planar imaging (EPI) sequence yielded maps of the mean apparent diffusion coefficient (ADC) and of the fractional anisotropy (FA). Hyperintense regions of interest (ROIs) on the T2-weighted (T2w) images at 6w were segmented in treated muscles. Mean values of T2, fat fraction, ADC, and FA were calculated in hyperintense ROIs and in reference ROIs in non-treated muscles. Results: Hyperintensity on T2w scans and increased T2 (group mean ± standard deviation: 35 ± 1 ms pre-BTX, 45 ± 2 ms at 6w, and 44 ± 2 ms at 12w) were observed in all patients at the injection sites. The T2 increase was spatially limited to parts of the injected muscles. FA increased (0.30 ± 0.03 pre-BTX, 0.34 ± 0.02 at 6w, and 0.36 ± 0.03 at 12w) while ADC did not change in hyperintense ROIs, indicating a BTX-induced increase in extracellular space and a simultaneous decrease of muscle fiber diameter. Fat fraction showed a trend for increase at 12w. Mean values in reference ROIs remained unchanged. Conclusion: MRI showed limited spatial distribution of the BTX-induced effects in pediatric CP patients. It could be a promising non-invasive tool for future studies to test BTX treatment protocols.

14.
Hip Int ; 31(5): 624-631, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32343622

RESUMO

BACKGROUND: Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity. METHODS: Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction. RESULTS: Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2% (gluteus medius). CONCLUSIONS: In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/cirurgia , Fêmur/cirurgia , Articulação do Quadril/cirurgia , Humanos , Reoperação
15.
J Arthroplasty ; 35(3): 877-885, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31699529

RESUMO

BACKGROUND: Total hip arthroplasty (THA) implants are routinely tested for their tribological performance through regulatory preclinical wear testing (eg, ISO-14242). The standardized loading conditions defined in these tests consist of simplified waveforms, which do not specifically represent in vivo loads in different groups of patients. The aim of this study is to investigate, through musculoskeletal modeling, patient-specific and activity-related variation in hip contact forces (HCFs) in a large cohort of THA patients during common activities of daily living (ADLs). METHODS: A total of 132 THA patients participated in a motion-capture analysis while performing different ADLs, including walk, fast walk, stair ascent, and descent (locomotor); sit to stand, stand to sit, squat, and lunge (nonlocomotor). HCFs were then calculated using the AnyBody Modeling System and qualitatively compared across all activities. The influence of gender on HCFs was analyzed through statistical parametric mapping analysis. RESULTS: Systematic differences were found in HCF magnitudes and individual components in both locomotor and nonlocomotor ADLs. The qualitative analysis of the ADLs revealed a large range and a large variability in forces experienced at the hip during different activities. Significant differences in the 3-dimensional loading patterns were observed between males and females across most activities. CONCLUSION: THA patients present a large variability in the forces experienced at the hip joint during their daily life. The interpatient variation might partially explain the heterogeneity observed in implant survival rates. A more extensive preclinical implant testing standard under clinically relevant loading conditions has been advocated to better predict and avoid clinical wear problems.


Assuntos
Artroplastia de Quadril , Articulação do Quadril , Atividades Cotidianas , Fenômenos Biomecânicos , Feminino , Articulação do Quadril/cirurgia , Humanos , Masculino
16.
PLoS One ; 13(9): e0204109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30222777

RESUMO

Musculoskeletal models represent a powerful tool to gain knowledge on the internal forces acting at the joint level in a non-invasive way. However, these models can present some errors associated with the level of detail in their geometrical representation. For this reason, a thorough validation is necessary to prove the reliability of their predictions. This study documents the development of a generic musculoskeletal model and proposes a working logic and simulation techniques for identifying specific model features in need of refinement; as well as providing a quantitative validation for the prediction of hip contact forces (HCF). The model, implemented in the AnyBody Modeling System and based on the cadaveric dataset TLEM 2.0, was scaled to match the anthropometry of a patient fitted with an instrumented hip implant and to reproduce gait kinematics based on motion capture data. The relative contribution of individual muscle elements to the HCF and joint moments was analyzed to identify critical geometries, which were then compared to muscle magnetic resonance imaging (MRI) scans and, in case of inconsistencies, were modified to better match the volumetric scans. The predicted HCF showed good agreement with the overall trend and timing of the measured HCF from the instrumented prosthesis. The average root mean square error (RMSE), calculated for the total HCF was found to be 0.298*BW. Refining the geometries of the muscles thus identified reduced RMSE on HCF magnitudes by 17% (from 0.359*BW to 0.298*BW) over the whole gait cycle. The detailed study of individual muscle contributions to the HCF succeeded in identifying muscles with incorrect anatomy, which would have been difficult to intuitively identify otherwise. Despite a certain residual over-prediction of the final hip contact forces in the stance phase, a satisfactory level of geometrical accuracy of muscle paths has been achieved with the refinement of this model.


Assuntos
Quadril/fisiologia , Modelos Biológicos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Prótese de Quadril , Humanos , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...