Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(14): 7334-46, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26817847

RESUMO

Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Concentração de Íons de Hidrogênio , Complexos de Proteínas Captadores de Luz/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Tilacoides/genética
2.
Proc Natl Acad Sci U S A ; 111(49): 17498-503, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422428

RESUMO

The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.


Assuntos
Proteínas de Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Zeaxantinas/metabolismo , Arabidopsis/enzimologia , Clorofila/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Oxirredutases/metabolismo
3.
J Phys Chem B ; 118(20): 5382-9, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24779893

RESUMO

Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. Here, we use broadband two-dimensional electronic spectroscopy to study the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Luz , Ficobilissomas/química , Ficobilissomas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Spirulina/metabolismo , Temperatura
4.
J Phys Chem Lett ; 3(17): 2487-92, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292138

RESUMO

Photosynthetic organisms convert photoenergy to chemical energy with near-unity quantum efficiency. This occurs through charge transfer in the reaction center, which consists of two branches of pigments. In bacteria, both branches are energy-transfer pathways, but only one is also an electron transfer pathway. One barrier to a full understanding of the asymmetry is that the two branches contain excited states close in energy that produce overlapping spectroscopic peaks. We apply polarization-dependent, 2D electronic spectroscopy to the B band of the oxidized bacterial reaction center. The spectra reveal two previously unresolved peaks, corresponding to excited states localized on each of the two branches. Furthermore, a previously unknown interaction between these two states is observed on a time scale of ∼100 fs. This may indicate an alternative pathway to electron transfer for the oxidized reaction center and thus may be a mechanism to prevent energy from becoming trapped in local minima.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...