Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2773: 157-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236544

RESUMO

Efficacy of novel cancer immunization protocols could be tested in cell line-derived xenograft tumor models (CDX), which are based on the implantation of human tumor cell lines into mice for the development of different tumors by numerous means, such as subcutaneous implantation and orthotopic, venial, or peritoneal injections. However, the disadvantages of this model are the biological alteration of the derived cells or the inability of the cell lines to accurately reflect the complexity of tumor heterogeneity. Therefore, syngeneic mouse models, which offer a relatively simple grafting technique, preservation of lineage hierarchy, and the ability to generate tumors in as little as 2-8 weeks, are being used to study potential future applications in medical treatment, particularly immunotherapies. Here, we describe a B16.F10 C57Bl/6 mouse melanoma model we selected for therapeutic studies employing IL-2 and IL-12 immunization protocols. Procedure of tumor cells inoculation and melanoma development in mice is described in detail, as first and necessary set-up for successful immunization experiments.


Assuntos
Vacinas Anticâncer , Melanoma Experimental , Humanos , Animais , Camundongos , Imunoterapia , Melanoma Experimental/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Methods Mol Biol ; 2773: 51-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236535

RESUMO

Recent progress in developing new vaccination strategies against cancer requires the production of complex and reliable animal models reflecting the complexity of the tumors with their microenvironment. Mice can be considered a good source due to low cost and ease of being genetically modified, inoculated with tumor cell lines or treated by chemicals to induce different cancers. Despite significant limitations in modeling human cancer complexity, preclinical trials conducted in mice can efficiently contribute to understand molecular mechanisms of cancer, to closely resemble and follow carcinogenesis steps impossible to study into humans, and to test new anticancer therapies. In this chapter, we generally describe the different mouse models developed for cancer vaccines' preclinical trials. A particular focus is dedicated to a chemically-induced colorectal cancer model in use in our laboratories.


Assuntos
Neoplasias Colorretais , Dextranos , Sulfatos , Humanos , Animais , Camundongos , Azoximetano/toxicidade , Carcinogênese , Modelos Animais de Doenças , Neoplasias Colorretais/induzido quimicamente , Microambiente Tumoral
3.
Vaccines (Basel) ; 11(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376422

RESUMO

Electrochemotherapy (ECT) is a standard of care in veterinary and human oncology. The treatment induces a well-characterized local immune response which is not able to induce a systemic response. In this retrospective cohort study, we evaluated the addition of gene electrotransfer (GET) of canine IL-2 peritumorally and IL-12 intramuscularly to enhance the immune response. Thirty canine patients with inoperable oral malignant melanoma were included. Ten patients received ECT+GET as the treatment group, while twenty patients received ECT as the control group. Intravenous bleomycin for the ECT was used in both groups. All patients had compromised lymph nodes which were surgically removed. Plasma levels of interleukins, local response rate, overall survival, and progression-free survival were evaluated. The results show that IL-2 and IL-12 expression peaked around days 7-14 after transfection. Both groups showed similar local response rates and overall survival times. However, progression-free survival resulted significantly better in the ECT+GET group, which is a better indicator than overall survival, as it is not influenced by the criterion used for performing euthanasia. We can conclude that the combination of ECT+GET using IL-2 and IL-12 improves treatment outcomes by slowing down tumoral progression in stage III-IV inoperable canine oral malignant melanoma.

4.
Vaccines (Basel) ; 12(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38250855

RESUMO

Immunotherapy can now be regarded as an attractive approach for cancer and infectious disease treatments [...].

5.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428997

RESUMO

YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.


Assuntos
Neoplasias Colorretais , Lectinas , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Biomarcadores Tumorais , Células CACO-2 , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Neoplasias Colorretais/metabolismo , Lectinas/genética , Lectinas/metabolismo , Fenótipo , Estudos Retrospectivos , Regulação para Cima
6.
Sci Rep ; 12(1): 17909, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284112

RESUMO

To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , DNA Ribossômico , Colo
7.
Cancer Sci ; 113(8): 2590-2599, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633186

RESUMO

Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic lesions, called microGIST, are detected in approximately 30% of the general population. Gastrointestinal stromal tumor driver mutation can be already detected in microGISTs, even if they do not progress into malignant cancer; these mutations are necessary, but insufficient events to foster tumor progression. Here we profiled the tissue microbiota of 60 gastrointestinal specimens in three different patient cohorts-micro, low-risk, and high-risk or metastatic GIST-exploring the compositional structure, predicted function, and microbial networks, with the aim of providing a complete overview of microbial ecology in GIST and its preclinical form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac and Bray-Curtis dissimilarities showed significant community-level separation between them and a pronounced difference in Proteobacteria, Firmicutes, and Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers associated with a specific type of lesion were identified. In particular, GIST samples were significantly enriched in the phylum Proteobacteria compared to microGISTs. Several pathways involved in sugar metabolism were also highlighted in GISTs; this was expected as cancer usually displays high aerobic glycolysis in place of oxidative phosphorylation and rise of glucose flux to promote anabolic request. Our results highlight that specific differences do exist in the tissue microbiome community between GIST and benign lesions and that microbiome restructuration can drive the carcinogenesis process.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Microbiota , Transformação Celular Neoplásica , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
8.
Cancers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673612

RESUMO

Colorectal cancer (CRC) initiation is believed to result from the conversion of normal intestinal stem cells (ISCs) into cancer stem cells (CSCs), also known as tumor-initiating cells (TICs). Hence, CRC evolves through the multiple acquisition of well-established genetic and epigenetic alterations with an adenoma-carcinoma sequence progression. Unlike other stem cells elsewhere in the body, ISCs cohabit with the intestinal microbiota, which consists of a diverse community of microorganisms, including bacteria, fungi, and viruses. The gut microbiota communicates closely with ISCs and mounting evidence suggests that there is significant crosstalk between host and microbiota at the ISC niche level. Metagenomic analyses have demonstrated that the host-microbiota mutually beneficial symbiosis existing under physiologic conditions is lost during a state of pathological microbial imbalance due to the alteration of microbiota composition (dysbiosis) and/or the genetic susceptibility of the host. The complex interaction between CRC and microbiota is at the forefront of the current CRC research, and there is growing attention on a possible role of the gut microbiome in the pathogenesis of CRC through ISC niche impairment. Here we primarily review the most recent findings on the molecular mechanism underlying the complex interplay between gut microbiota and ISCs, revealing a possible key role of microbiota in the aberrant reprogramming of CSCs in the initiation of CRC. We also discuss recent advances in OMICS approaches and single-cell analyses to explore the relationship between gut microbiota and ISC/CSC niche biology leading to a desirable implementation of the current precision medicine approaches.

9.
Vaccines (Basel) ; 8(3)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957424

RESUMO

Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.

10.
Biomolecules ; 10(5)2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397678

RESUMO

Exosome-like nanoparticles (ELNs) are attracting interest as important vehicles of intercellular communication, both in prokaryotes and eukaryotes. Recently, dietary nanoparticles similar to mammalian exosomes have attracted attention for these features. In particular they appear to be relevant in the modulation of several cellular processes as well as candidate carriers of bioactive molecules (proteins, lipids, and nucleic acids, including miRNAs) with therapeutic value. Herein, we investigated the cellular uptake of blueberry-derived ELNs (B-ELNs) by a human stabilized endothelial cell line (EA.hy926) and the ability of B-ELNs to modulate the expression of inflammatory genes as the response of tumor necrosis factor-α (TNF-α). Our results indicate that 1) EA.hy926 cells internalize B-ELNs in a dose-dependent manner; 2) pretreatment with B-ELNs counters TNF-α-induced reactive oxygen species (ROS) generation and loss of cell viability and modulates the differential expression of 29 genes (fold change > 1.5) induced by TNF-α compared to control; 3) pathway analysis reveals their involvement in a total of 340 canonical pathways, 121 KEGG pathways, and 121 GO Biological processes; and 4) the intersection between differentially expressed (DE) genes and miRNAs contained in B-ELNs unveils a set of candidate target genes, such as prostaglandin I2 synthase (PTGIS), mitogen-activated protein kinase 14 (MAPK14), and phosphodiesterase 7A (PDE7A), for ELNs-contained cargo. In conclusion, our study indicates that B-ELNs can be considered candidate therapeutic carriers of bioactive compounds potentially able to protect vascular system against various stressors.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Exossomos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/química , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Bases , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Exossomos/ultraestrutura , Ontologia Genética , Humanos , Inflamação/genética , Inflamação/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Cancers (Basel) ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340405

RESUMO

Gene Electro-Transfer (GET) is a powerful method of DNA delivery with great potential for medical applications. Although GET has been extensively studied in vitro and in vivo, the optimal parameters remain controversial. 2D cell cultures have been widely used to investigate GET protocols, but have intrinsic limitations, whereas 3D cultures may represent a more reliable model thanks to the capacity of reproducing the tumor architecture. Here we applied two GET protocols, using a plate or linear electrode, on 3D-cultured HCC1954 and MDA-MB231 breast cancer cell lines grown on a novel collagen-free 3D scaffold and compared results with conventional 2D cultures. To evaluate the electrotransfer efficiency, we used the plasmid pEGFP-C3 encoding the enhanced green fluorescent protein (EGFP) reporter gene. The novel 3D scaffold promoted extracellular matrix deposition, which particularly influences cell behavior in both in vitro cell cultures and in vivo tumor tissue. While the transfection efficiency was similar in the 2D-cultures, we observed significant differences in the 3D-model. The transfection efficiency in the 3D vs 2D model was 44% versus 15% (p < 0.01) and 24% versus 17% (p < 0.01) in HCC1954 and MDA-MB231 cell cultures, respectively. These findings suggest that the novel 3D scaffold allows reproducing, at least partially, the peculiar morphology of the original tumor tissues, thus allowing us to detect meaningful differences between the two cell lines. Following GET with plate electrodes, cell viability was higher in 3D-cultured HCC1954 (66%) and MDA-MB231 (96%) cell lines compared to their 2D counterpart (53% and 63%, respectively, p < 0.001). Based on these results, we propose the novel 3D scaffold as a reliable support for the preparation of cell cultures in GET studies. It may increase the reliability of in vitro assays and allow the optimization of GET parameters of in vivo protocols.

12.
Cancers (Basel) ; 11(10)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635093

RESUMO

Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan-Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592-0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC.

13.
Mol Cancer ; 17(1): 169, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30501625

RESUMO

EphB2 and EphA2 control stemness and differentiation in the intestinal mucosa, but the way they cooperate with the complex mechanisms underlying tumor heterogeneity and how they affect the therapeutic outcome in colorectal cancer (CRC) patients, remain unclear. MicroRNA (miRNA) expression profiling along with pathway analysis provide comprehensive information on the dysregulation of multiple crucial pathways in CRC.Through a network-based approach founded on the characterization of progressive miRNAomes centered on EphA2/EphB2 signaling during tumor development in the AOM/DSS murine model, we found a miRNA-dependent orchestration of EphB2-specific stem-like properties in earlier phases of colorectal tumorigenesis and the EphA2-specific control of tumor progression in the latest CRC phases. Furthermore, two transcriptional signatures that are specifically dependent on the EphA2/EphB2 signaling pathways were identified, namely EphA2, miR-423-5p, CREB1, ADAMTS14, and EphB2, miR-31-5p, mir-31-3p, CRK, CXCL12, ARPC5, SRC.EphA2- and EphB2-related signatures were validated for their expression and clinical value in 1663 CRC patients. In multivariate analysis, both signatures were predictive of survival and tumor progression.The early dysregulation of miRs-31, as observed in the murine samples, was also confirmed on 49 human tissue samples including preneoplastic lesions and tumors. In light of these findings, miRs-31 emerged as novel potential drivers of CRC initiation.Our study evidenced a miRNA-dependent orchestration of EphB2 stem-related networks at the onset and EphA2-related cancer-progression networks in advanced stages of CRC evolution, suggesting new predictive biomarkers and potential therapeutic targets.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , Receptor EphA2/genética , Receptor EphB2/genética , Transdução de Sinais/genética , Animais , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Camundongos , Transcrição Gênica/genética
14.
Cancers (Basel) ; 10(11)2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373297

RESUMO

Cancer vaccines based on plasmid DNA represent a good therapeutic perspective, despite their low potency. Animal-derived hyaluronidases (Hyals) are employed in oncological clinical practice. Hyal has been also demonstrated to be a good enhancer of intramuscular Gene Electro-Transfer (GET) efficiency in anti-cancer preclinical protocols, with increased transfected cells and higher expression of the encoded genes. Nevertheless, the use of animal-derived Hyals results limited respect to their potentialities, since such preparations could be affected by low purity, variable potency and uncertain safety. To improve the delivery of intramuscular GET-based protocols in mouse, we investigated a new recombinant Hyal, the rHyal-sk, to assess in vivo safety and activity of this treatment at cellular and biochemical levels. We evaluated the cellular events and the inflammation chemical mediators involved at different time points after rHyal-sk administration plus GET. Our results demonstrated the in vivo safety and efficacy of rHyal-sk when injected once intramuscularly in association with GET, with no toxicity, good plasmid in-take ability, useful inflammatory response activation, and low immunogenicity. Following these findings, we would recommend the use of the new rHyal-sk for the delivery of DNA-based vaccines and immunotherapy, as well as into clinical practice, for tumor disease treatments.

15.
Semin Cancer Biol ; 53: 232-247, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130662

RESUMO

Cancer stem cells (CSCs) in colorectal tumorigenesis are suggested to be responsible for initiation, development and propagation of colorectal cancer (CRC) and have been extensively characterized by the expression of phenotypic determinants, such as surface or intracellular proteins. The generation of CSCs is likely due to a dysregulation of the signaling pathways that principally control self-renewal and pluripotency in normal intestinal stem cells (ISCs) through different (epi)genetic changes that define cell fate, identity, and phenotype of CSCs. These aspects are currently under intense investigation. In the framework of the oncogenic signaling pathways controlled by microRNAs (miRNAs) during CRC development, a plethora of data suggests that miRNAs can play a key role in several regulatory pathways involving CSCs biology, epithelial-mesenchymal transition (EMT), angiogenesis, metastatization, and pharmacoresistance. This review examines the most relevant evidences about the role of miRNAs in the etiology of CRC, through the regulation of colon CSCs and the principal differences between colorectal CSCs and benign stem cells. In this perspective, the utility of the principal CSCs-related miRNAs changes is explored, emphasizing their use as potential biomarkers to aid in diagnosis, prognosis and predicting response to therapy in CRC patients, but also as promising targets for more effective and personalized anti-CRC treatments.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/genética , Diferenciação Celular/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/terapia , Humanos , Prognóstico , Transdução de Sinais/genética
16.
Clin Cancer Res ; 23(1): 159-170, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27401248

RESUMO

PURPOSE: EphA2 receptor is involved in multiple cross-talks with other cellular networks, including EGFR, FAK, and VEGF pathways, with which it collaborates to stimulate cell migration, invasion, and metastasis. Colorectal cancer (CRC) EphA2 overexpression has also been correlated to stem-like properties of cells and tumor malignancy. We investigated the molecular cross-talk and miRNAs modulation of the EphA2 and EGFR pathways. We also explored the role of EphA2/EGFR pathway mediators as prognostic factors or predictors of cetuximab benefit in patients with CRC. EXPERIMENTAL DESIGN: Gene expression analysis was performed in EphA2high cells isolated from CRC of the AOM/DSS murine model by FACS-assisted procedures. Six independent cohorts of patients were stratified by EphA2 expression to determine the potential prognostic role of a EphA2/EGFR signature and its effect on cetuximab treatment response. RESULTS: We identified a gene expression pattern (EphA2, Efna1, Egfr, Ptpn12, and Atf2) reflecting the activation of EphA2 and EGFR pathways and a coherent dysregulation of mir-26b and mir-200a. Such a pattern showed prognostic significance in patients with stage I-III CRC, in both univariate and multivariate analysis. In patients with stage IV and WT KRAS, EphA2/Efna1/Egfr gene expression status was significantly associated with poor response to cetuximab treatment. Furthermore, EphA2 and EGFR overexpression showed a combined effect relative to cetuximab resistance, independently from KRAS mutation status. CONCLUSIONS: These results suggest that EphA2/Efna1/Egfr genes, linked to a possible control by miR-200a and miR-26b, could be proposed as novel CRC prognostic biomarkers. Moreover, EphA2 could be linked to a mechanism of resistance to cetuximab alternative to KRAS mutations. Clin Cancer Res; 23(1); 159-70. ©2016 AACR.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Efrina-A2/metabolismo , Receptores ErbB/metabolismo , Receptor EphA2/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Receptores ErbB/genética , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Camundongos , Modelos Biológicos , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptor EphA2/genética , Transdução de Sinais
17.
Oncotarget ; 6(38): 41237-57, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26517809

RESUMO

The connection between colorectal cancer (CRC) and Wnt signaling pathway activation is well known, but full elucidation of the underlying regulation of the Wnt/ß-catenin pathway and its biological functions in CRC pathogenesis is still needed. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine model has been used as an experimental platform able to mimic human sporadic CRC development with predictable timing. We performed genome-wide expression profiling of AOM/DSS-induced tumors and normal colon mucosa to identify potential novel CRC biomarkers. Remarkably, the enhanced expression of Notum, a conserved feedback antagonist of Wnt, was observed in tumors along with alterations in Glypican-1 and Glypican-3 levels. These findings were confirmed in a set of human CRC samples. Here, we provide the first demonstration of significant changes in Notum and glypicans gene expression during CRC development and present evidence to suggest them as potential new biomarkers of CRC pathogenesis.


Assuntos
Neoplasias Colorretais/genética , Esterases/genética , Glipicanas/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/genética , Análise por Conglomerados , Neoplasias Colorretais/induzido quimicamente , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Genes Chromosomes Cancer ; 51(12): 1133-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22927297

RESUMO

Epigenetic alterations, such as CpG islands methylation and histone modifications, are recognized key characteristics of cancer. Glycogenes are a group of genes which epigenetic status was found to be changed in several tumors. In this study, we determined promoter methylation status of the glycogene beta-1,4-galactosyltransferase 1 (B4GALT1) in colorectal cancer patients. Methylation status of B4GALT1 was assessed in 130 colorectal adenocarcinomas, 13 adenomas, and in paired normal tissue using quantitative methylation specific PCR (QMSP). B4GALT1 mRNA expression was evaluated in methylated/unmethylated tumor and normal specimens. We also investigated microsatellite stability and microsatellite instability status and KRAS/BRAF mutations. Discriminatory power of QMSP was assessed by receiving operating curve (ROC) analysis on a training set of 24 colorectal cancers and paired mucosa. The area under the ROC curve (AUC) was 0.737 (95% confidence interval [CI]:0.591-0.881, P = 0.005) with an optimal cutoff value of 2.07 yielding a 54% sensitivity (95% CI: 35.1%-72.1%) and a specificity of 91.7% (95% CI: 74.1%-97.7%). These results were confirmed in an independent validation set where B4GALT1 methylation was detected in 52/106 patients. An inverse correlation was observed between methylation and B4GALT1 mRNA expression levels (r = -0.482, P = 0.037). Significant differences in methylation levels and frequencies was demonstrated in invasive lesions as compared with normal mucosa (P = 0.0001) and in carcinoma samples as compared with adenoma (P = 0.009). B4GALT1 methylation is a frequent and specific event in colorectal cancer and correlates with downregulation of mRNA expression. These results suggest that the glycogene B4GALT1 represent a valuable candidate biomarker of invasive phenotype of colorectal cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Galactosiltransferases/genética , Regiões Promotoras Genéticas , Idoso , Metilação de DNA , Feminino , Galactosiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Mensageiro/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
19.
J Carcinog ; 10: 9, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21483655

RESUMO

Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci-adenoma-carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS-treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model.

20.
Cancer Immunol Immunother ; 59(10): 1583-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20390416

RESUMO

After more than 15 years of experimentation, DNA vaccines have become a promising perspective for tumour diseases, and animal models are widely used to study the biological features of human cancer progression and to test the efficacy of vaccination protocols. In recent years, immunisation with naked plasmid DNA encoding tumour-associated antigens or tumour-specific antigens has revealed a number of advantages: antigen-specific DNA vaccination stimulates both cellular and humoral immune responses; multiple or multi-gene vectors encoding several antigens/determinants and immune-modulatory molecules can be delivered as single administration; DNA vaccination does not induce autoimmune disease in normal animals; DNA vaccines based on plasmid vectors can be produced and tested rapidly and economically. However, DNA vaccines have shown low immunogenicity when tested in human clinical trials, and compared with traditional vaccines, they induce weak immune responses. Therefore, the improvement of vaccine efficacy has become a critical goal in the development of effective DNA vaccination protocols for anti-tumour therapy. Several strategies are taken into account for improving the DNA vaccination efficacy, such as antigen optimisation, use of adjuvants and delivery systems like electroporation, co-expression of cytokines and co-stimulatory molecules in the same vector, different vaccination protocols. In this review we discuss how the combination of these approaches may contribute to the development of more effective DNA vaccination protocols for the therapy of lymphoma in a mouse model.


Assuntos
Vacinas Anticâncer , Terapia Genética , Linfoma/terapia , Vacinas de DNA , Animais , Modelos Animais de Doenças , Humanos , Linfoma/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...