Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290088

RESUMO

In this report, networks of carbon nanotubes (CNTs) are transformed into composite yarns by infusion, mechanical consolidation and polymerization of dicyclopentadiene (DCPD). The microstructures of the CNT yarn and its composite are characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and a focused ion beam used for cross-sectioning. Pristine yarns have tensile strength, modulus and elongation at failure of 0.8 GPa, 14 GPa and 14.0%, respectively. In the composite yarn, these values are significantly enhanced to 1.2 GPa, 68 GPa and 3.4%, respectively. Owing to the consolidation and alignment improvement, its electrical conductivity was increased from 1.0 × 105 S/m (raw yarn) to 5.0 × 105 S/m and 5.3 × 105 S/m for twisted yarn and composite yarn, respectively. The strengthening mechanism is attributed to the binding of the DCPD polymer, which acts as a capstan and increases frictional forces within the nanotube bundles, making it more difficult to pull them apart.

2.
ACS Appl Mater Interfaces ; 12(19): 22050-22057, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32266808

RESUMO

As one of the representative metallic hollow nanostructures, Au nanoframes have shown fascinating properties such as strong localized surface plasmon resonance associated with emerging applications such as surface-enhanced Raman scattering (SERS) sensors. In this study, for the first time, a facile one-pot synthetic approach for hollow Au nanoframes is demonstrated by directly etching Au nanoplates, that is, the so-called self-templates. A novel growth mechanism has been revealed that involves a synergistic function of Ag and Br ions. The presence of Ag+ leads to the observation of self-limiting Au film thickness, whereas Au{111} facets are preferentially attacked by the presence of Br- in the reaction ambient. More importantly, graphene is introduced to prevent/minimize aggregation during the formation of Au nanoframes. The combined simulation and experimental studies show that the hybrid platform made of graphene/Au nanoframes is capable of detecting analytes at concentration levels down to 10-9 M by using the SERS technique.

3.
Sci Adv ; 5(8): eaaw2398, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467973

RESUMO

Cooling, nucleation, and phase growth are ubiquitous processes in nature. Effective control of nucleation and phase growth is of significance to yield refined microstructures with enhanced performance for materials. Recent studies reveal that ultrafine grained (UFG)/nanocrystalline metals exhibit extraordinary properties. However, conventional microstructure refinement methods, such as fast cooling and inoculation, have reached certain fundamental limits. It has been considered impossible to fabricate bulk UFG/nanocrystalline metals via slow cooling. Here, we report a new discovery that nanoparticles can refine metal grains to ultrafine/nanoscale by instilling a continuous nucleation and growth control mechanism during slow cooling. The bulk UFG/nanocrystalline metal with nanoparticles also reveals an unprecedented thermal stability. This method overcomes the grain refinement limits and may be extended to any other processes that involve cooling, nucleation, and phase growth for widespread applications.

4.
Chem Commun (Camb) ; 54(33): 4124-4127, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29623328

RESUMO

We report a facile synthesis of Au nanowires (AuNWs) with a high aspect ratio (l/D) of up to 5000 on a plasma activated graphene template with ultrasound assistance. We demonstrate that the ultrasonication induced symmetry breaking of Au clusters facilitates the growth of AuNWs from the embryonic stages. Furthermore, the growth mechanism of AuNWs is systematically investigated using high resolution electron transmission microscopy (HRTEM), which reveals the unique role of the defective graphene template in directing the growth of AuNWs.

5.
Nano Lett ; 18(3): 1875-1881, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406754

RESUMO

Au nanoplates (quasi-two-dimensional single crystals) are most commonly synthesized using a mixture of Au precursors via approaches involving multiple processing steps and the use of seed crystals. Here, we report the synthesis of truncated-hexagonal {111}-oriented micrometer-scale Au nanoplates on graphene multilayers using only potassium tetrabromoaurate (KAuBr4) as the precursor. We demonstrate that the nanoplate sizes can be controllably varied from tens of nanometers up to a few micrometers by introducing desired concentrations of chloroauric acid (HAuCl4) to KAuBr4 and their thicknesses from ∼13 to ∼46 nm with the synthesis time. Through a series of experiments carried out as a function of synthesis time and precursor composition [mixtures of HAuCl4 and KAuBr4, KBr, or ionic liquid 1-butyl-3-methylimidazolium bromide ([Bmim]Br)], we identify the optimal HAuCl4 and KAuBr4 concentrations and synthesis times that yield the largest and the thinnest size nanoplates. We show that the nanoplates are kinetically limited morphologies resulting from preferential growth of {111} facets facilitated by bromide ions in KAuBr4 solutions; we suggest that the presence of chloride ions enhances the rate of Au deposition and the relative concentration of chloride and bromide ions determines the shape anisotropy of resulting crystals. Our results provide new insights into the kinetics of nanoplate formation and show that a single precursor containing both Au and Br is sufficient to crystallize nanoplates on graphitic layers, which serve as reducing agent while enabling the nucleation and growth of Au nanoplates. We suggest that a similar approach may be used for the synthesis of nanoplates of other metals on weakly interacting van der Waals layers for, potentially, a variety of new applications.

6.
Nanoscale ; 10(6): 2764-2773, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29323364

RESUMO

Assembling Au nanocrystals with tunable dimensions and shapes on graphene templates has attracted increasing attention recently. However, directly growing anisotropic Au nanobelts on a graphene support has been rarely reported. Here, a facile, one-pot, and surfactant-free route is demonstrated to synthesize well-defined Au nanobelts with the induction of a multilayer graphene (mlG) template. The obtained Au nanobelts are single-crystalline with a preferable (111) orientation. More importantly, their structural evolution starting from Au clusters is systematically investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirm that mlG consistently induces the growth of Au nanobelts from nucleation to the growth completion. The interfacial interaction between Au atoms and the graphene lattice is a predominant factor to direct the shapes and structures of Au nanocrystals, which makes the structures of Au nanobelts highly tunable with the surface modification of the mlG template. The assembly of mlG-Au nanobelts also presents extraordinary detection sensitivity when employed as a flexible surface-enhanced Raman scattering (SERS) substrate, suggesting their great potential application in high-performance sensors. This report strengthens the fundamental understanding of the interactions between noble metals and carbon interfaces, which paves the way to construct and manipulate the complex structures of metals on graphitic substrates.

7.
ACS Appl Mater Interfaces ; 9(7): 6246-6254, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28106364

RESUMO

In this work, we demonstrate a novel route for one-pot synthesis of two-dimensional gold nanoplates (2-D AuNPLs) on carbon nanotube (CNT) sheet. Well-defined AuNPLs are grafted onto CNT sheet via a facile hydrothermal reduction process, during which bromine ions are employed as the surfactant for gold anisotropic growth. Scanning electron microscopy (SEM) shows large-scale AuNPLs with micrometer-scaled length and sub-100 nm thickness are deposited uniformly on the CNT sheet. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) results confirm the synthesized AuNPLs are single-crystalline with preferential {111} orientation. Based on the CNT sheet/AuNPLs hybrid, we have fabricated a flexible surface-enhanced Raman scattering (SERS) substrate, which can effectively detect the analyte Rhodamine 6G (Rh6G) at the concentration as low as 1 × 10-7 M. The excellent SERS performance of this novel flexible substrate is mainly attributed to nanoscaled gaps between the neighbors, large surface area with roughness, and their sharp edges and corners.

8.
Sci Technol Adv Mater ; 12(4): 045004, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877423

RESUMO

The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE) parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...