Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 100(3): 427-432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37972294

RESUMO

PURPOSE: The study objective was to assess the influence of radiofrequency electromagnetic fields (RF-EMF) exposure on sleep patterns in preterm newborns. We hypothesized that an increase in RF-EMF exposure levels would alter infants' sleep structure parameters. MATERIALS AND METHODS: Individual, continuous measurements of RF-EMF levels were performed in 29 hospitalized preterm newborns throughout the first 21 days after birth. The last day, overnight sleep structure was recorded by polysomnography. Relationships between both chronic (three-week period) and acute (polysomnographic period) RF-EMF levels with sleep parameters were computed. RESULTS: At median levels, the main chronic effect was an increase in indeterminate sleep with RF-EMF exposure. At the highest exposure levels found in our study, an increase in RF-EMF levels increased sleep fragmentation. No significant relationship was found between acute RF-EMF levels and sleep parameters. CONCLUSIONS: Despite no consolidated disruption in sleep structure, this study is the first to show that some sleep parameters seem to have a certain sensitivity to chronic - but not acute - RF-EMF exposure in preterm newborns. Further studies are needed to confirm our results and examine possible mid- to long-term, sleep-related cardiorespiratory and neurodevelopmental outcomes.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Recém-Nascido , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental , Sono , Ondas de Rádio/efeitos adversos
2.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445806

RESUMO

Recent studies have shed light on the effects of low-intensity radiofrequency (RF) fields on thermoregulation and adipose tissue metabolism. The present study aims to further explore these effects by analyzing the expression of thermoregulatory genes and investigating the involvement of mitochondria in adipose tissue metabolism. Male mice (n = 36 C57BL/6J) were assigned to either exposed or control groups. The exposed groups were subjected to RF fields at 900 MHz, with specific absorption rates (SAR) of 0.1 W/kg or 0.4 W/kg, either for three or seven consecutive days. The findings indicate that RF exposure leads to changes in adipose tissue markers, with some effects being dose-dependent and time-dependent. In brown adipose tissue (BAT), after 3 days of RF exposure, thermogenesis is reduced, mitochondrial activity in BAT decreases, and an increase in gene expression, responsible for balancing the regulatory and damaging effects of reactive oxygen species (ROS), was observed. This effect was partially compensated after 7 days of exposure. In white adipose tissue (WAT), RF exposure results in reduced fatty acid oxidation, impaired energy production, and hindered adipocyte differentiation. Notably, no effects of RF on mitochondrial biogenesis in WAT were observed. These findings contribute to understanding the effects of RF exposure on adipose tissue metabolism and thermoregulation, highlighting dose-dependent and time-dependent responses.


Assuntos
Tecido Adiposo Marrom , Campos Eletromagnéticos , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Tecido Adiposo Branco/metabolismo , Termogênese/fisiologia
3.
Environ Int ; 156: 106711, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153890

RESUMO

BACKGROUND: Exposure to radiofrequency electromagnetic fields (RF-EMF) is often measured with personal exposimeters, but the accuracy of measurements can be hampered as carrying the devices on-body may result in body shielding. Further, the compact design may compromise the frequency selectivity of the sensor. The aim of this study was to compare measurements obtained using a multi-band body-worn distributed-exposimeter (BWDM) with two commercially available personal exposimeters (ExpoM-RF and EmeSpy 200) under real-life conditions. METHODS: The BWDM measured power density in 10 frequency bands (800, 900, 1800, 2100, 2600 MHz, DECT 1900 MHz, WiFi 2.4 GHz; with separate uplink/downlink bands for 900, 1800 and 2100 MHz); using 20 separate antennas integrated in a vest and placed on diametrically opposite locations on the body, to minimize body-shielding. RF-EMF exposure data were collected from several microenvironments (e.g. shopping areas, train stations, outdoor rural/ urban residential environments, etc.) by walking around pre-defined areas/routes in Belgium, Spain, France, the Netherlands and Switzerland. Measurements were taken every 1-4 s with the BWDM in parallel with an ExpoM-RF and an EmeSpy 200 exposimeter. We calculated medians and interquartile ranges (IQRs) and compared difference, ratios and correlations of geometric mean RF-EMF exposure levels per microenvironment as measured with the exposimeters and the BWDM. RESULTS: Across 267 microenvironments, medians and IQR of total BWDM measured RF-EMF exposure was 0.13 (0.05-0.33) mW/m2. Difference: IQR of exposimeters minus BWDM exposure levels was -0.011 (-0.049 to 0.0095) mW/m2 for the ExpoM-RF and -0.056 (-0.14 to -0.017) for the EmeSpy 200; ratios (exposimeter/BWDM) of total exposure had an IQR of 0.79 (0.55-1.1) for the ExpoM-RF and 0.29 (0.22-0.38) for the EmeSpy 200. Spearman correlations were 0.93 for the ExpoM-RF vs the BWDM and 0.96 for the EmeSpy 200 vs the BWDM. DISCUSSION AND CONCLUSIONS: Results indicate that exposimeters worn on-body provide somewhat lower total RF-EMF exposure as compared to measurements conducted with the BWDM, in line with effects from body shielding. Ranking of exposure levels of microenvironments showed high correspondence between the different device types. Our results are informative for the interpretation of existing epidemiological research results.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental , Ondas de Rádio/efeitos adversos , Espanha , Suíça
4.
Bioelectromagnetics ; 42(5): 407-414, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998007

RESUMO

As industrialized countries race to install and deploy 5G networks, some countries have taken the lead and already have operational 5G networks in place. South Korea is among these. In this study, we measured exposure to electromagnetic fields in South Korea to evaluate the relative contribution of 5G as compared with other frequencies such as 2G, 3G, and 4G. Results show that the emission of 5G contributes about 15% to total telecommunications emissions. The highest levels were observed in the vicinity of 5G antennas and remain below the limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). © 2021 Bioelectromagnetics Society.


Assuntos
Telefone Celular , Ondas de Rádio , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/análise , Ondas de Rádio/efeitos adversos , República da Coreia
6.
Bioelectromagnetics ; 42(6): 455-463, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015144

RESUMO

Recent studies have revealed that rodents' physiological responses to low-intensity radiofrequency (RF) electromagnetic fields were similar to thermoregulatory responses to cold conditions. The primary autonomic response to cold exposure is peripheral vasoconstriction that allows rodents to reduce heat loss and maintain a relatively constant internal body temperature. In the present study, we investigated the effects of 900 MHz RF at a low level (SAR of 0.35 W/kg) on tail skin temperature (Ttail ) in rats. We showed that rats exposed to RF had lower Ttail than control rats at ambient temperatures between 27 and 28 °C, suggesting that RF could induce a noticeable degree of vasoconstriction under mild-warm ambient temperatures. This difference in Ttail was suppressed after the intraperitoneal injection of a vasodilator, an α-adrenergic antagonist, confirming the hypothesis of the vasoconstriction in exposed rats. Moreover, like a response to cold stimuli, RF exposure led to increased plasma concentrations of important factors: noradrenaline (a neurotransmitter responsible for vasoconstriction and thermogenesis) and fatty acids (markers of activated thermogenesis). Taken together, these findings indicate that low-intensity RF levels triggered some key physiological events usually associated with responses to cold in rats. © 2021 Bioelectromagnetics Society.


Assuntos
Regulação da Temperatura Corporal , Vasoconstrição , Animais , Temperatura Corporal , Ondas de Rádio/efeitos adversos , Ratos , Temperatura Cutânea
7.
Artigo em Inglês | MEDLINE | ID: mdl-32722208

RESUMO

Nowadays, information and communication technologies (mobile phones, connected objects) strongly occupy our daily life. The increasing use of these technologies and the complexity of network infrastructures raise issues about radiofrequency electromagnetic fields (Rf-Emf) exposure. Most previous studies have assessed individual exposure to Rf-Emf, and the next level is to assess populational exposure. In our study, we designed a statistical tool for Rf-Emf populational exposure assessment and mapping. This tool integrates geographic databases and surrogate models to characterize spatiotemporal exposure from outdoor sources, indoor sources, and mobile phones. A case study was conducted on a 100 × 100 m grid covering the 14th district of Paris to illustrate the functionalities of the tool. Whole-body specific absorption rate (SAR) values are 2.7 times higher than those for the whole brain. The mapping of whole-body and whole-brain SAR values shows a dichotomy between built-up and non-built-up areas, with the former displaying higher values. Maximum SAR values do not exceed 3.5 and 3.9 mW/kg for the whole body and the whole brain, respectively, thus they are significantly below International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations. Indoor sources are the main contributor to populational exposure, followed by outdoor sources and mobile phones, which generally represents less than 1% of total exposure.


Assuntos
Telefone Celular , Comunicação , Campos Eletromagnéticos , Exposição Ambiental , Campos Eletromagnéticos/efeitos adversos , Humanos , Ondas de Rádio/efeitos adversos
8.
PLoS One ; 15(4): e0226858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267859

RESUMO

High-power microwaves are used to inhibit electronics of threatening military or civilian vehicles. This work aims to assess health hazards of high-power microwaves and helps to define hazard threshold levels of modulated radiofrequency exposures such as those emitted by the first generations of mobile phones. Rats were exposed to the highest possible field levels, under single acute or repetitive exposures for eight weeks. Intense microwave electric fields at 1 MV m-1 of nanoseconds duration were applied from two sources at different carrier frequencies of 10 and 3.7 GHz. The repetition rate was 100 pps, and the duration of train pulses lasted from 10 s to twice 8 min. The effects on the central nervous system were evaluated, by labelling brain inflammation marker GFAP and by performing different behavioural tests: rotarod, T-maze, beam-walking, open-field, and avoidance test. Long-time survival was measured in animals repeatedly exposed, and anatomopathological analysis was performed on animals sacrificed at two years of life or earlier in case of precocious death. Control groups were sham exposed. Few effects were observed on behaviour. With acute exposure, an avoidance reflex was shown at very high thermal level (22 W kg-1); GFAP was increased some days after exposure. Most importantly, with repeated exposures, survival time was 4-months shorter in the exposed group, with eleven animals exhibiting a large sub-cutaneous tumour, compared to two in the sham group. A residual X-ray exposure was also present in the beam (0.8 Gy), which is probably not a bias for the observed result. High power microwaves below thermal level in average, can increase cancer prevalence and decrease survival time in rats, without clear effects on behaviour. The parameters of this effect need to be further explored, and a more precise dosimetry to be performed.


Assuntos
Carcinogênese/efeitos da radiação , Micro-Ondas/efeitos adversos , Neoplasias Experimentais/epidemiologia , Animais , Aprendizagem da Esquiva/efeitos da radiação , Comportamento Animal/efeitos da radiação , Telefone Celular , Incidência , Masculino , Neoplasias Experimentais/etiologia , Radiometria , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida , Fatores de Tempo
9.
Sci Rep ; 10(1): 5724, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235895

RESUMO

Communication technologies based on radiofrequency (RF) propagation bring great benefits to our daily life. However, their rapid expansion raises concerns about possible impacts on public health. At intensity levels below the threshold to produce thermal effects, RF exposure has also recently been reported to elicit biological effects, resembling reactions to cold. The objective of the present study was to investigate the effects of non-thermal RF on body temperature in mice and the related mechanisms. 3-months-old C57BL/6 J mice were exposed to a continuous RF signal at 900 MHz, 20 ± 5 V.m-1 for 7 consecutive days, twice per day during the light phase, for one hour each time. The SAR was 0.16 ± 0.10 W.kg-1. We showed that body temperature patterns in mice change synchronously with the RF exposure periods. Average body temperature in the light phase in the exposed group was higher than in the control group. The expression of the TRPM8 gene was not affected by RF in trigeminal ganglia. Furthermore, the injection of a TRPM8 antagonist did not induce a temperature decrease in exposed mice, as this was the case for sham-controls. These findings indicate that 900 MHz RF exposure at non-thermal level produce a physiological effect on body temperature in mice. However, the involvement of TRPM8 receptors in the mechanism by which RF induced changes in body temperature of mice which remains to be further explored. It must then be assessed if this effect is extrapolable to man, and if this could lead to consequences on health.


Assuntos
Temperatura Corporal/efeitos da radiação , Peso Corporal/efeitos da radiação , Ondas de Rádio , Animais , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Camundongos , Naftiridinas/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/efeitos da radiação
10.
Environ Res ; 181: 108894, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740038

RESUMO

Preterm neonates constitute a vulnerable population that is highly sensitive to its environment. Given the increased use of wireless communication devices (mobile and digital enhanced cordless telecommunications, WiFi networks, etc.), neonates hospitalized in a department of pediatrics are potentially exposed to radiofrequency electromagnetic fields (RF-EMF). Strikingly, data on RF-EMF levels in pediatric units have not previously been published. The objective of the present study was thus to quantify the RF-EMF levels in a 34-bed tertiary department of pediatrics with a neonatal critical care unit (NCCU) and a neonatal intensive care unit (NICU). To this end, we used triaxle antenna dosimeters to map the RF-EMF levels in the environment and to measure spot emissions from medical devices. In a first set of experiments, RF-EMF levels at 144 points in the staff area and in the children's rooms in the NCCU and NICU were evaluated over a 24-h period. In a second set of measurements performed in a Faraday chamber, we measured the RF-EMF levels emitted by the medical devices to which neonates are potentially exposed in the department of pediatrics. The RF-EMF levels were significantly higher in the NCCU than in the NICU (p < 0.05). Although the two units did not differ significantly with regard to the average maximum values, the single greatest value recorded in the NCCU (6 V/m GSM + UMTS 900 (UL) frequency band, in the staff area) was more than twice that recorded in the NICU (3.70 V/m in the UMTS 2100 (UL) frequency band, in the children's rooms). The NCCU and NICU did not differ significantly with regard to the time during which the RF-EMF level at each measurement point was more than two standard deviations above its mean. The RF-EMF level was significantly higher during the day than during the night (p < 0.001). The various medical devices used in the NICU did not emit detectable amounts of RF. Overall, RF-EMF levels in the NCCU and NICU were very low. It is probable that the RF-EMFs measured here were primarily generated by the parents' and staff members' activities, rather than by medical devices. However, a combination of low-level, chronic exposure with transient, elevated peak values in a vulnerable population of preterm neonates may be of particular concern. In a department of pediatrics, decreasing preterm neonates' exposure to RF-EMFs should primarily involve a limitation on the use of wireless communication devices by staff members and parents.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Exposição Ambiental , Pediatria , Criança , Humanos , Recém-Nascido , Ondas de Rádio
11.
Occup Environ Med ; 77(1): 22-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831625

RESUMO

BACKGROUND: Data on the effects of extremely low frequency electromagnetic fields (ELF-EMF) on pregnancy outcomes are inconclusive. OBJECTIVE: To study the relation between maternal cumulative exposure to ELF-EMF during pregnancy and the risk of prematurity or small for gestational age (SGA) in a pooled analysis of two French birth cohorts. METHODS: Elfe and Epipage2 are both population-based birth cohorts initiated in 2011 and included 18 329 and 8400 births, respectively. Health data and household, mother and child characteristics were obtained from medical records and questionnaires at maternity and during follow-up. A job exposure matrix was used to assess cumulative exposure to ELF-EMF during three periods: (1) until 15 weeks of gestation, (2) until 28 weeks of gestation and (3) until 32 weeks of gestation. Analyses were restricted to single live births in mainland France and to mothers with documented jobs (N=19 894). Adjusted logistic regression models were used. RESULTS: According to the period studied, 3.2%-4% of mothers were classified as highly exposed. Results were heterogeneous. Increased risks of prematurity were found among low exposed mothers for the three periods, and no association was observed among the most exposed (OR1=0.92 (95% CI 0.74 to 1.15); OR2=0.98 (95% CI 0.80 to 1.21); OR3=1.14 (95% CI 0.92 to 1.41)). For SGA, no association was observed with the exception of increased risk among the low exposed mothers in period 2 and the most exposed in period 3 (OR=1.25 (95% CI 1.02 to 1.53)). CONCLUSION: Some heterogeneous associations between ELF-EMF exposure and prematurity and SGA were observed. However, due to heterogeneity (ie, their independence regarding the level of exposure), associations cannot be definitely explained by ELF-EMF exposure.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Materna/efeitos adversos , Exposição Ocupacional/efeitos adversos , Nascimento Prematuro/epidemiologia , Adulto , Feminino , França , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Modelos Logísticos , Razão de Chances , Gravidez , Adulto Jovem
12.
Int J Radiat Biol ; 94(10): 890-895, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028653

RESUMO

PURPOSE: The present study aimed to determine the effect of acute exposure to electromagnetic fields (EMF) emitted by a mobile phone on electrodermal activity (EDA) in response to an auditory stimulus. MATERIALS AND METHODS: The EDA of 28 young volunteers was recorded following 26 min of exposure to a GSM mobile phone (900 MHz). Palmar sensors enabled repeat recording of 2 min 45 s in the pre-exposure, exposure and post-exposure phases in response to sound stimuli. RESULTS: The latency, amplitude of skin conductance responses (SCRs), integral of skin conductance response and number of SCRs in response to the auditory stimuli were not modified by exposure. Skin conductance and tonic activity decomposition of the recorded signal were significantly different between the two sessions (p < .0001), but the changes could not be attributed to EMF exposure. There was also a tendency toward a fast reduction in the amplitude and number of electrodermal responses after placement of the mobile phone. In response to successive stimuli, there was a significant difference between the first response and subsequent responses for all variables except latency. CONCLUSIONS: Our results showed a decrease in the number of responses and their amplitude as a result of placement of the mobile device and whether it was turned 'on' or 'off', but there were no changes associated with exposure to GSM radiofrequency waves in this group of volunteers.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Fenômenos Eletrofisiológicos/efeitos da radiação , Voluntários Saudáveis , Ondas de Rádio/efeitos adversos , Pele/efeitos da radiação , Adulto , Telefone Celular , Feminino , Resposta Galvânica da Pele/efeitos da radiação , Humanos , Fatores de Tempo , Adulto Jovem
13.
Sensors (Basel) ; 18(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346280

RESUMO

A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7-90.8 µW·m - 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.


Assuntos
Ondas de Rádio , Bélgica , Calibragem , Campos Eletromagnéticos , Humanos , Monitoramento de Radiação , Incerteza
14.
Int J Radiat Biol ; 93(8): 841-848, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28466664

RESUMO

PURPOSE: To assess the level of various salivary and urinary markers of patients with electromagnetic hypersensitivity (EHS) and to compare them with those of a healthy control group. MATERIALS AND METHODS: We analyzed samples from 30 EHS individuals and a matched control group of 25 individuals (non-EHS) aged between 22 and 66. We quantified cortisol both in saliva and urine, alpha amylase (sAA), immunoglobulin A and C Reactive Protein levels in saliva and neopterin in urine (uNeopterin). RESULTS: sAA was found to be significantly higher (p < 0.005) in the EHS group. uNeopterin and sAA analysis showed a significant difference based on the duration of EHS. CONCLUSION: Higher levels of sAA in EHS participants may suggest that the sympathetic adrenal medullar system is activated. However, most of the analyzed markers of the immune system, sympathetic activity and circadian rhythm did not vary significantly in the EHS group. There is a trend to the higher levels of some variables in subgroups according to the EHS duration.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Saliva/enzimologia , alfa-Amilases/metabolismo , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Bioelectrochemistry ; 111: 62-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27243445

RESUMO

Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.


Assuntos
Telefone Celular , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ondas de Rádio/efeitos adversos , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Transporte de Elétrons/efeitos da radiação , Humanos , Temperatura , Triptofano/química , Triptofano/metabolismo
16.
Bioelectromagnetics ; 37(3): 175-182, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969907

RESUMO

Individuals who suffer from idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) complain of a variety of adverse health effects. Troubled sleep remains a recurrent and common symptom in IEI-EMF individuals. Melatonin, a circadian hormone, plays a major role in the sleep process. In this study, we compared levels of melatonin between a sensitive group (IEI-EMF, n = 30) and a non-sensitive control group (non IEI-EMF, n = 25) without exposure to electromagnetic sources. Three questionnaires were used to evaluate the subjective quality and sleep quantity: the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index and the Spiegel Sleep Inventory. Melatonin was quantified in saliva and its major metabolite 6-sulfatoxymelatonin (aMT6s) in urine. Melatonin levels were compared by a two-way analysis of variance at various times between the control and IEI-EMF group. Despite significantly different sleep scores between the two groups, with a lower score in the IEI-EMF group (P < 0.001), no statistical difference was found between the two groups for saliva melatonin (P > 0.05) and urine aMT6s (P > 0.05). Bioelectromagnetics. 37:175-182, 2016. © 2016 Wiley Periodicals, Inc.

17.
J Neurophysiol ; 113(7): 2753-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695646

RESUMO

The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.


Assuntos
Ritmo alfa/fisiologia , Telefone Celular , Eletroencefalografia/métodos , Ondas de Rádio , Descanso/fisiologia , Saliva/metabolismo , Adulto , Ritmo alfa/efeitos da radiação , Cafeína/análise , Eletroencefalografia/efeitos da radiação , Feminino , Humanos , Hidrocortisona/análise , Masculino , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
PLoS One ; 9(6): e99007, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905635

RESUMO

Some studies have shown that people living near a mobile phone base station may report sleep disturbances and discomfort. Using a rat model, we have previously shown that chronic exposure to a low-intensity radiofrequency electromagnetic field (RF-EMF) was associated with paradoxical sleep (PS) fragmentation and greater vasomotor tone in the tail. Here, we sought to establish whether sleep disturbances might result from the disturbance of thermoregulatory processes by a RF-EMF. We recorded thermal preference and sleep stage distribution in 18 young male Wistar rats. Nine animals were exposed to a low-intensity RF-EMF (900 MHz, 1 V x m(-1)) for five weeks and nine served as non-exposed controls. Thermal preference was assessed in an experimental chamber comprising three interconnected compartments, in which the air temperatures (Ta) were set to 24°C, 28°C and 31°C. Sleep and tail skin temperature were also recorded. Our results indicated that relative to control group, exposure to RF-EMF at 31°C was associated with a significantly lower tail skin temperature (-1.6°C) which confirmed previous data. During the light period, the exposed group preferred to sleep at Ta = 31°C and the controls preferred Ta = 28°C. The mean sleep duration in exposed group was significantly greater (by 15.5%) than in control group (due in turn to a significantly greater amount of slow wave sleep (SWS, +14.6%). Similarly, frequency of SWS was greater in exposed group (by 4.9 episodes.h-1). The PS did not differ significantly between the two groups. During the dark period, there were no significant intergroup differences. We conclude that RF-EMF exposure induced a shift in thermal preference towards higher temperatures. The shift in preferred temperature might result from a cold thermal sensation. The change in sleep stage distribution may involve signals from thermoreceptors in the skin. Modulation of SWS may be a protective adaptation in response to RF-EMF exposure.


Assuntos
Comportamento Animal/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Temperatura , Animais , Comportamento Animal/fisiologia , Masculino , Ratos , Ratos Wistar , Temperatura Cutânea/efeitos da radiação , Fases do Sono/fisiologia , Fases do Sono/efeitos da radiação
19.
Microcirculation ; 20(7): 629-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23590124

RESUMO

OBJECTIVE: To establish whether SkBF can be modified by exposure to the radiofrequency waves emitted by a mobile phone when the latter is held against the jaw and ear. METHODS: Variations in SkBF and Tsk in adult volunteers were simultaneously recorded with a thermostatic laser Doppler system during a 20-minute "radiofrequency" exposure session and a 20-minute "sham" session. The skin microvessels' vasodilatory reserve was assessed with a heat challenge at the end of the protocol. RESULTS: During the radiofrequency exposure session, SkBF increased (vs. baseline) more than during the sham exposure session. The sessions did not differ significant in terms of the Tsk time-course response. The skin microvessels' vasodilatory ability was found to be greater during radiofrequency exposure than during sham exposure. CONCLUSIONS: Our results reveal the existence of a specific vasodilatory effect of mobile phone radiofrequency emission on skin perfusion.


Assuntos
Telefone Celular , Microcirculação/efeitos da radiação , Ondas de Rádio , Pele/irrigação sanguínea , Vasodilatação/efeitos da radiação , Adulto , Orelha/irrigação sanguínea , Feminino , Humanos , Arcada Osseodentária/irrigação sanguínea , Masculino , Fatores de Tempo
20.
Environ Sci Pollut Res Int ; 20(5): 2735-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23143821

RESUMO

The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V m(-1)) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (-1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g h(-1)). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern.


Assuntos
Envelhecimento , Regulação da Temperatura Corporal/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Comportamento Alimentar/efeitos da radiação , Ondas de Rádio/efeitos adversos , Sono/efeitos da radiação , Animais , Masculino , Prazosina/administração & dosagem , Ratos , Ratos Wistar , Cauda/irrigação sanguínea , Cauda/efeitos da radiação , Temperatura , Fatores de Tempo , Vasoconstrição/efeitos da radiação , Vasodilatadores/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...