Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(5): 3379-3389, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38259984

RESUMO

The emergence of resistance in detrimental pathogenic bacteria towards well-recognized antibiotics has greatly impacted global medicine, consequently exploring potent antibacterial compounds is becoming a potential area of research. Although photocatalytic metal oxides have been extensively explored in this regard, their applicability is diminished due to the requirement of photon energy. Therefore, in our study, we explored the light-independent antibacterial effect of two unexplored titanium species, known as metatitanic acid (MTA) and potassium titanate, against Staphylococcus aureus, Escherichia coli, and Pseudomonas spp. using the disk diffusion method in Luria-Bertani agar medium, where the well-known antibiotic, gentamicin, was used as the positive control. These two titanium compounds were readily synthesized through a novel process which was originally developed for the extraction of TiO2 from ilmenite. The synthesized MTA was characterized using FT-IR, Raman spectroscopy, XRD, TGA, UV-visible spectroscopy, and SEM. According to our findings, both MTA and potassium titanate exhibited superior light-independent antibacterial properties, where for some concentrations, the effect was even greater than gentamicin. However, nano-TiO2 totally failed as an antibacterial compound against the tested three strains under dark conditions.

2.
J Ayurveda Integr Med ; 14(4): 100751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506606

RESUMO

BACKGROUND: Since ancient times, the essential element sulphur has played an important role in different medical fields. It is one of the main materials used in herbo-mineral pharmaceutics in Ayurveda. However, for Ayurvedic pharmaceutical preparations, the purity of sulphur is crucial in avoiding any harmful reactions and to enhance the medicinal quality. Therefore, it is subjected to a process called 'gandhaka shodhana' using cow's milk, ghee or occasionally plant extracts. The plant, Eclipta alba (L.) Hassak, containing many bioactive compounds, is one of the extracts known to be used in the 'shodhana' process of sulphur. However, in comparison to the laboratory purification method of sulphur neither the effect of this 'shodhana' process in removing impurities from sulphur nor its effect on the structure and morphology of sulphur has been evaluated. OBJECTIVES: This study identifies physical, morphological, and structural changes that occur in sulphur when it is subjected to the 'shodhana' process compared to the changes that occur in sulphur obtained after simple laboratory purification. METHODOLOGY: Both samples were characterized using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Fourier Transform Infrared spectroscopy, and Raman spectroscopy. Observed physical changes such as colour, allotropic form, odour, hardness, transparency, and lustre of the samples were also determined using recommended techniques. RESULTS: Although the laboratory purification method separates the sulphur from physical and chemical impurities, Ayurveda 'shodhana' process with E. alba converts the sulphur into a more pharmaceutically suitable form by making it more nebulous and introducing higher brittleness, FT-IR data shows removal of chemical impurities from sulphur during 'shodhana' process in contrast to laboratory purified sample.

3.
ACS Omega ; 7(42): 37264-37278, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312427

RESUMO

This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.

4.
ACS Omega ; 6(42): 28171-28181, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723015

RESUMO

This work reports the fabrication of nanomagnetite- and nanotitania-incorporated polyacrylonitrile nanofibers (MTPANs) by an electrospinning process, which has the potential to be used as a membrane material for the selective removal of Cd(II) and As(V) in water. The fiber morphology was characterized by scanning electron microscopy (SEM). The incorporation of nanomagnetite and nanotitania in the composite fiber matrix was confirmed by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The fibers doped with nanomagnetite and nanotitania (MPAN and TPAN fibers, respectively), as well as MTPAN and neat polycrylonitrile (PAN) fibers, after thermally stabilizing at 275 °C in air, were assessed for their comparative As(V)- and Cd(II)-ion removal capacities. The isotherm studies indicated that the highest adsorption of Cd(II) was shown by MTPAN, following the Langmuir model with a q m of 51.5 mg/m2. On the other hand, MPAN showed the highest As(V)adsorption capacity, following the Freundlich model with a K F of 0.49. The mechanism of adsorption of both Cd(II) and As(V) by fibers was found to be electrostatically driven, which was confirmed by correlating the point of zero charges (PZC) exhibited by fibers with the pH of maximum ion adsorptions. The As(V) adsorption on MPAN occurs by an inner-sphere mechanism, whereas Cd(II) adsorption on MTPAN is via both surface complexation and an As(V)-assisted inner-sphere mechanism. Even though the presence of coexistent cations, Ca(II) and Mg(II), has been shown to affect the Cd(II) removal by MTPAN, the MTPAN structure shows >50% removal efficiency even for minute concentrations (0.5 ppm) of Cd(II) in the presence of high common ion concentrations (10 ppm). Therefore, the novel polyacrylonitrile-based nanofiber material has the potential to be used in polymeric filter materials used in water purification to remove As(V) and Cd(II) simultaneously.

5.
ACS Omega ; 6(21): 13527-13543, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095648

RESUMO

The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption.

6.
ACS Omega ; 6(12): 8517-8530, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817513

RESUMO

In this study, hydroxyapatite (HAP) nanocomposites were prepared with chitosan (HAP-CTS), carboxymethyl cellulose (HAP-CMC), alginate (HAP-ALG), and gelatin (HAP-GEL) using a simple wet chemical in situ precipitation method. The synthesized materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. This revealed the successful synthesis of composites with varied morphologies. The adsorption abilities of the materials toward Pb(II), Cd(II), F-, and As(V) were explored, and HAP-CTS was found to have versatile adsorption properties for all of the ions, across a wide range of concentrations and pH values, and in the presence of common ions found in groundwater. Additionally, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy confirmed the affinity of HAP-CTS toward multi-ion mixture containing all four ions. HAP-CTS was hence engineered into a more user-friendly form, which can be used to form filters through its combination with cotton and granular activated carbon. A gravity filtration study indicates that the powder form of HAP-CTS is the best sorbent, with the highest breakthrough capacity of 3000, 3000, 2600, and 2000 mL/g for Pb(II), Cd(II), As(V), and F-, respectively. Hence, we propose that HAP-CTS could be a versatile sorbent material for use in water purification.

7.
Nanoscale Adv ; 3(9): 2585-2597, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134151

RESUMO

Capacitive deionization (CDI) is a trending water desalination method during which the impurity ions in water can be removed by electrosorption. In this study, nano-manganese dioxide (MnO2) and reduced graphene oxide (rGO)-doped polyacrylonitrile (PAN) composite fibers are fabricated using an electrospinning technique. The incorporation of both MnO2 and rGO nanomaterials in the synthesized fibers was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The electrochemical characteristics of electrode materials were examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge cycles (CCCDs). The specific capacitance of the PAN electrode increased with increasing MnO2 and rGO contents as well as when thermally treated at 280 °C. Thermally treated composite fibers with 17% (w/w) MnO2 and 1% (w/w) rGO (C-rGOMnPAN) were observed to have the best electrochemical performance, with a specific capacitance of 244 F g-1 at a 10 mV s-1 scan rate. The electrode system was used to study the removal of sodium chloride (NaCl), cadmium (Cd2+) and lead (Pb2+) ions. Results indicated that NaCl showed the highest electrosorption (20 472 C g-1) compared to two heavy metal salts (14 260 C g-1 for Pb2+ and 6265 C g-1 for Cd2+), which is most likely to be due to the ease of mass transfer of lighter Na+ and Cl- ions; When compared, Pb2+ ions tend to show more electrosorption on these fibers than Cd2+ ions. Also, the C-rGOMnPAN electrode system is shown to work with 95% regeneration efficiency when 100 ppm NaCl is used as the electrolyte. Hence, it is clear that the novel binder-free, electrospun C-rGOMnPAN electrodes have the potential to be used in salt removal and also for the heavy metal removal applications of water purification.

8.
Carbohydr Polym ; 237: 116132, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241395

RESUMO

Polyethylene glycol (PEG) based shape-stabilized phase change materials (PCMs) were successfully prepared using chitin nanofibers (CNFs). CNFs were isolated from crab shells and, resulted CNFs were several tenth of nanometers in diameter and had lengths ranging from several hundreds of nanometers to few micrometers. Introduction of CNFs in to PEG resulted shape-stabilized composites. Various PEG-CNF composites were fabricated and the resulted materials were encapsulated in to an optical device to obtain temperature dependent transparency. In the optimized formulation, the device remained opaque (∼3.5 %) below the melting point of the PEG-CNF composite and became gradually transparent as the temperature of the device increased ultimately stabilizing at a transmittance value of ∼88 %. CNF phase was seen to have an effect on the thermal properties of the PEG-CNF material. The work introduces a novel strategy for the shape stabilization of liquid-solid phase change materials unlocking potential for new PCM based devices.

9.
Carbohydr Polym ; 235: 116024, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122517

RESUMO

Chitin nanofibers are emerging as a very attractive bio-compatible material in number of advanced materials applications. In this work, the colloidal stability of the chitin nanofibers was investigated against pH, ionic strength, temperature and concentration. Aqueous solutions of chitin nanofibers were found to be stabilized due to the carboxylic acid moieties available in the fibril surface as evidenced by both 13C NMR and potentiometric titration methods. Amongst others, pH and ionic strength were the most influential factors which determine both hydrodynamic diameter and zeta potential. The chitin nanofiber dispersions were stabilized at pH values higher than 7, with an average zeta potential value of -22.5 mV. A monotonic increase of zeta potential was observed with respect to increase in ionic strength. Zeta potential got stabilized at -14.0 mV for ionic strengths over 20 mM of NaCl. Hydrodynamic particle size was also found to be a function of temperature and concentration.

10.
RSC Adv ; 10(33): 19290-19299, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515424

RESUMO

The mechanical strength of natural rubber (NR) was enhanced by incorporating novel titanium carbide (TiC) nanocrystals as a filling material. The rubber nanocomposites were prepared through mixing TiC nanoparticles with NR latex and the resulting NR/TiC masterbatch was further mixed at the solid stage with other chemicals via internal mixing. The final rubber composites prepared using TiC as the nanofiller were denoted as NR/TiC-0, NR/TiC-0.5, NR/TiC-1.0, NR/TiC-2.5, and NR/TiC-5.0; moreover, a comparative study was conducted using carbon black (CB-330) as the filler and the composites were denoted as NR/CB-1.0 and NR/CB-5.0. As per the results of tensile tests, the NR/TiC-1.0 composite revealed the highest tensile value of 31.13 MPa and this indicated improvement by 92% compared to that of the control (NR/TiC-0 (16.22 MPa)); moreover, it indicated improvements by 73% and 63% compared to the values of NR/CB-1.0 and NR/CB-5.0, respectively. Moreover, scanning electron microscopy (SEM) analysis revealed a better dispersion of the NR/TiC-1.0 composite compared to the other composites. Furthermore, dynamic mechanical analysis (DMA) was conducted to observe the energy storage and loss properties at dynamic conditions; the results revealed that the highest storage peak and lowest loss peak were observed for the NR/TiC-1.0 composite. Also, thermogravimetric analysis revealed the superior thermal stability of the NR/TiC-1.0 composite to that of the others at the NR degradation temperature of around 400 °C. Importantly, the curing time (t 90) of NR/TiC-1.0 was reduced considerably compared to that of the other composites even the NR/CB composites, which would be beneficial for industries to save energy at the curing stages of tire-like applications. The improvements were significant when compared to the industrially well-known NR/CB composites and well above the industrially required minimum parameters of the tire industry. Ultimately, this will open up a distinct avenue for natural rubber reinforcement.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31826328

RESUMO

Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Inorgânicos/química , Nanopartículas/química , Compostos Orgânicos/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Microtecnologia
12.
Mater Sci Eng C Mater Biol Appl ; 104: 109917, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500044

RESUMO

In this work, nanofibers based on hydrophilic poly(vinylpyrrolidone) (PVP) and hydrophobic ethyl cellulose (EC) were generated via electrospinning. A model antibiotic, ciprofloxacin (CIF), was also incorporated into the fibers. Fibers were collected on both a foil substrate and a commercial gauze, the latter in the interests of developing a smart fabric. Electron microscopy images revealed that the fibers collected on both foil and fabric were homogeneous and cylindrical. Infrared spectroscopy, X-ray diffraction and differential scanning calorimetry demonstrated that CIF was successfully loaded into the fibers and present in the amorphous physical form. In vitro drug release tests were conducted to simulate drug release from the formulations into a wound site, and as expected the hydrophilic fibers showed much faster release than their hydrophobic analogues. CIF was released through a combined mechanism of polymer erosion and drug diffusion, and the EC nanofibers displayed close to zero-order release over three days. Fibroblast cells are able to grow and proliferate on the fibers. Finally, inhibition zone assays revealed that the growth of both Gram positive and Gram negative bacteria could be effectively inhibited as a result of the presence of CIF in the fibers. There were no marked differences between the fibers collected on foil and on gauze, and electrospinning can be performed directly onto a gauze substrate to prepare a smart fabric.


Assuntos
Bandagens , Celulose/análogos & derivados , Ciprofloxacina/farmacologia , Nanofibras/química , Povidona/química , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Derme/citologia , Liberação Controlada de Fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Difração de Raios X
13.
BMC Infect Dis ; 19(1): 618, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299893

RESUMO

BACKGROUND: The increased transmission of multidrug-resistant (MDR) tuberculosis (TB) poses a challenge to tuberculosis prevention and control in Sri Lanka. Isoniazid (INH) is a key element of the first line anti tuberculosis treatment regimen. Resistance to INH may lead to development of MDR TB. Therefore, early detection of INH resistance is important to curb spread of resistance. Due to the limited availability of rapid molecular methods for detection of drug resistance in Sri Lanka, this study was aimed at developing a simple and rapid gold nanoparticle (AuNP) based lateral flow strip for the simultaneous detection of the most common INH resistance mutation (katG S315 T, 78.6%) and Mycobacterium tuberculosis (MTb). METHODS: Lateral flow strip was designed on an inert plastic backing layer containing a sample pad, nitrocellulose membrane and an absorption pad. Biotin labeled 4 capture probes which separately conjugated with streptavidin were immobilized on the nitrocellulose. The test sample was prepared by multiplex PCR using primers to amplify codon 315 region of the katG gene and MTb specific IS6110 region. The two detection probes complementary to the 5' end of each amplified fragment was conjugated with gold nanoparticles (20 nm) and coupled with the above amplified PCR products were applied on the sample pad. The hybridization of the amplified target regions to the respective capture probes takes place when the sample moves towards the absorption pad. Positive hybridization is indicated by red colour lines. RESULTS: The three immobilized capture probes on the strip (for the detection of TB, katG wild type and mutation) were 100 and 96.6% specific and 100 and 92.1% sensitive respectively. CONCLUSION: The AuNP based lateral flow assay was capable of differentiating the specific mutation and the wild type along with MTb identification within 3 h.


Assuntos
Doenças Transmissíveis/diagnóstico , Nanotecnologia/métodos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , Doenças Transmissíveis/tratamento farmacológico , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Ouro/química , Humanos , Isoniazida/uso terapêutico , Limite de Detecção , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase Multiplex , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Sri Lanka , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
14.
Int J Pharm ; 562: 172-179, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898638

RESUMO

The management of pain and inflammation arising from wounds is essential in obtaining effective healing rates. The application of a wound dressing loaded with an anti-inflammatory drug would enable both issues to be ameliorated, and the aim of this work was to fabricate such a dressing by electrospinning. Fibers comprising ethyl cellulose (EC) and poly(vinyl pyrrolidone) (PVP) loaded with naproxen (Nap) were developed to be used in the early stages of wound care. A family of PVP/EC/Nap systems was prepared by varying the PVP: EC ratio. In all cases, the products of electrospinning comprise non-woven mats of fibers which generally have smooth and cylindrical morphologies. The formulations exist as amorphous solid dispersions, and there appear to be intermolecular interactions between the three components. Adjusting the polymer ratios results in tunable drug release, and formulations have been produced which give zero-order drug release over 20 and 80 h. The fiber mats generated in this work thus have great potential to be used as dressings for the treatment of wound pain and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celulose/análogos & derivados , Nanofibras/química , Naproxeno/química , Povidona/química , Celulose/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos
15.
RSC Adv ; 9(2): 636-644, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517593

RESUMO

Thermal conductivity of natural rubber (NR) was enhanced by incorporating novel conductive hybrid nanofillers, namely polyaniline grafted carbon black (PANI/CB) nanoparticles and carbon black nanoparticles linked with carbon microfiber (CF/CB) composites. The PANI/CB hybrid fillers were synthesized using an in situ method, where aniline monomers were initially adsorbed onto carbon black spherical domains and, afterwards, it was polymerized in the presence of an oxidizer. Final rubber composites were prepared through melt mixing, where PANI/CB and CF/CB filler loading was kept at 40 parts per hundred of rubber (phr). The thermal conductivity values of the rubber composites with CF/CB (20 : 20) and PANI/CB (20 : 20) yield were 0.45 W m-1 K-1 and 0.31 W m-1 K-1, respectively and the thermal conductivity improved significantly compared to the control (0.25 W m-1 K-1) sample. The higher thermal conductivity values of CF/CB and PANI/CB incorporated composites suggest that the generated networked structure of CF and PANI nanofibers with CB nanoparticles has immensely contributed to enhancing the heat dissipation compared to that of the neat CB rubber composite. Scanning electron micrographs (SEM) confirmed the attachment of the synthesized PANI onto the spherical CB nanoparticles and interconnected morphology of CF/CB and PANI/CB hybrid fillers. The synthesized PANI/CB hybrid filler was further characterized using Fourier-transform infrared (FTIR) spectroscopy to evaluate the chemical properties. Furthermore, thermogravimetric analysis revealed the higher thermal stability of CF/CB (20 : 20) and PANI/CB (20 : 20) composites compared to the control. Moreover, the addition of CF/CB (20 : 20) and PANI/CB (20 : 20) improved the mechanical properties such as ultimate tensile strength, modulus at break, resilience and abrasion resistance significantly and well above the minimum required standard mechanical parameters in the tyre industry. These reinforced composites show great potential to be used as heat dissipating rubber composites in the tyre industry.

16.
RSC Adv ; 9(61): 35588-35598, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528100

RESUMO

A novel hydroxyapatite montmorillonite (HAP-MMT) nanocomposite system was synthesized using a simple wet chemical in situ precipitation method. Neat nano hydroxyapatite (HAP) was also synthesized for comparison. The characterization of the materials was carried out using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) isotherms to study the functional groups, morphology, crystallinity and the surface area respectively. Batch adsorption studies and kinetic studies on fluoride adsorption were conducted for the HAP-MMT system and for neat HAP. The effect of parameters such as contact time, pH, initial concentration, temperature, and thermodynamic parameters and the effect of coexisting ions on fluoride adsorption by HAP-MMT were studied. Results of the isotherm experiments were fitted to four adsorption isotherm models namely Langmuir, Freundlich, Temkin and Dubinin Radushkevich. Fluoride adsorption over HAP-MMT fitted to the Freundlich adsorption isotherm model and showed more than two-fold improved adsorption capacity (16.7 mg g-1) compared to neat HAP. The best-fitting kinetic model for both adsorbents was found to be pseudo second order. Calculated thermodynamic parameters indicated that the fluoride adsorption by HAP-MMT is more favorable compared to that on HAP within the temperature range of 27 °C-60 °C. Improved fluoride adsorption by HAP-MMT is attributed to the exfoliated nature of HAP-MMT. Gravity filtration studies carried out using a 1.5 ppm fluoride solution, which is closer to the ground water fluoride concentrations of Chronic Kidney Disease of unknown etiology (CKDu) affected areas in Sri Lanka, resulted in a 1600 ml g-1 break through volume indicating the potential of HAP-MMT to be used in real applications.

17.
RSC Adv ; 9(41): 23666-23677, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530589

RESUMO

Contemporary studies of self-healing polymer composites are based on microcapsules synthesized using synthetic and toxic polymers, biopolymers, etc. via methods such as in situ polymerization, electrospraying, and air atomization. Herein, we synthesized a healing agent, epoxy (EPX) encapsulated calcium carbonate (CC) microcapsules, which was used to prepare self-healing EPX composites as a protective coating for metals. The CC microcapsules were synthesized using two facile methods, namely, the soft-template method (STM) and the in situ emulsion method (EM). Microcapsules prepared using the STM (ST-CC) were synthesized using sodium dodecyl sulphate (SDS) surfactant micelles as the soft-template, while the microcapsules prepared using the EM (EM-CC) were synthesized in an oil-in-water (O/W) in situ emulsion. These prepared CC microcapsules were characterized using light microscopy (LMC), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermogravimetric analysis (TGA). The synthesized ST-CC microcapsules were spherical in shape, with an average diameter of 2.5 µm and an average shell wall thickness of 650 nm, while EM-CC microcapsules had a near-spherical shape with an average diameter of 3.4 µm and an average shell wall thickness of 880 nm. The ST-CC capsules exhibited flake-like rough surfaces while EM-CC capsules showed smooth bulgy surfaces. The loading capacity of ST-CC and EM-CC microcapsules were estimated using TGA and found to be 11% and 36%, respectively. The FTIR and NMR spectra confirmed the EPX encapsulation and the unreactive nature of the loaded EPX with the inner walls of CC microcapsules. The synthesized CC microcapsules were further incorporated into an EPX matrix to prepare composite coatings with 10 (w/w%), 20 (w/w%), and 50 (w/w%) capsule loadings. The prepared EPX composite coatings were scratched and observed using FE-SEM and LMC to evaluate the release of encapsulated EPX inside the CC capsules, which is analogous to the healing behaviour. Moreover, EPX composite coatings with 20 (w/w%) and 50 (w/w%) of ST-CC showed better healing performances. Thus, it was observed that ST-CC microcapsules outperformed EM-CC. Additionally, the EPX/CC coatings showed remarkable self-healing properties by closing the gaps of the scratch surfaces. Thus, these formaldehyde-free, biocompatible, biodegradable, and non-toxic CC based EPX composite coatings hold great potential to be used as a protective coating for metal substrates. Primary results detected significant corrosion retardancy due to the self-healing coatings under an accelerated corrosion process, which was performed with a salt spray test.

18.
Chem Cent J ; 12(1): 119, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470922

RESUMO

Ample attention has been devoted to the construction of anti-cancer drug delivery systems with increased stability, and controlled and targeted delivery, minimizing toxic effects. In this study we have designed a magnetically attractive hydroxyapatite (m-HAP) based alginate polymer bound nanocarrier to perform targeted, controlled and pH sensitive drug release of 6-gingerol, doxorubicin, and their combination, preferably at low pH environments (pH 5.3). They have exhibited higher encapsulation efficiency which is in the range of 97.4-98.9% for both 6-gingerol and doxorubicin molecules whereas the co-loading has accounted for a value of 81.87 ± 0.32%. Cell proliferation assays, fluorescence imaging and flow cytometric analysis, demonstrated the remarkable time and dose responsive anti-proliferative effect of drug loaded nanoparticles on MCF-7 cells and HEpG2 cells compared with their neat counter parts. Also, these systems have exhibited significantly reduced toxic effects on non-targeted, non-cancerous cells in contrast to the excellent ability to selectively kill cancerous cells. This study has suggested that this HAP based system is a versatile carrier capable of loading various drug molecules, ultimately producing a profound anti-proliferative effect.

19.
ACS Appl Mater Interfaces ; 10(40): 33913-33922, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30220194

RESUMO

Halloysite nanotube (HNT)-reinforced alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning to mimic the natural extracellular matrix (ECM) structure which is beneficial for tissue regeneration. An antiseptic drug, cephalexin (CEF)-loaded HNT, was incorporated into the alginate-based matrix to obtain sustained antimicrobial protection and robust mechanical properties, the key criteria for tissue engineering applications. Electron microscopic imaging and drug release studies revealed that CEF had penetrated into the lumen space of the HNT and also deposited on the outer walls, with a total loading capacity of 30 wt %. Moreover, the diameter of alginate-based nanofibers of the scaffolds ranged from 40 to 522 nm with well-aligned HNTs, resulting in superior mechanical properties. For instance, the addition of 5% (w/w) HNT improved the tensile strength (σ) and elastic modulus by 3-fold and 2-fold, respectively, compared to those of the alginate-based scaffolds without HNT. The fabricated scaffolds exhibited remarkable antimicrobial properties against both Gram-negative and Gram-positive bacteria, and the cytotoxicity studies confirmed the nontoxicity of the fabricated scaffolds. Drug release kinetics showed that CEF inside HNTs diffuses within 24 h and that the diffusion of the drug is delayed by 7 days once the CEF-loaded HNTs are incorporated into the alginate-based nanofibers. These fabricated alginate-based electrospun scaffolds with enhanced mechanical properties and sustained antimicrobial protection hold great potential to be used as artificial ECM scaffolds for tissue engineering applications.


Assuntos
Alginatos/química , Antibacterianos , Bactérias/crescimento & desenvolvimento , Cefalexina , Argila/química , Nanofibras/química , Nanotubos/química , Alicerces Teciduais/química , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Linhagem Celular , Cefalexina/química , Cefalexina/farmacocinética , Preparações de Ação Retardada/química , Camundongos , Engenharia Tecidual/métodos
20.
Eur J Pharm Biopharm ; 128: 18-26, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625162

RESUMO

This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ±â€¯0.3% and 97.37 ±â€¯0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ±â€¯0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Durapatita/química , Feminino , Compostos Férricos/química , Citometria de Fluxo , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Masculino , Nanopartículas/química , Imagem Óptica , Polímeros/química , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...