Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 6133, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257673

RESUMO

Omega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Microglia/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fagocitose/efeitos dos fármacos , Animais , Encéfalo/crescimento & desenvolvimento , Suplementos Nutricionais , Ácidos Graxos Ômega-3/deficiência , Ácidos Graxos Ômega-3/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Homeostase , Humanos , Lipoxigenase , Masculino , Camundongos , Transtornos do Neurodesenvolvimento
2.
Behav Brain Res ; 379: 112348, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31711897

RESUMO

Dopamine (DA) is a critical neurotransmitter involved in motivational processes. Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase, the rate-limiting enzyme in DA synthesis. Decreases in BH4 levels are observed in several DA-related neuropsychiatric diseases involving impairment in motivation. Yet, whether BH4 could be used to treat motivational deficits has not been comprehensively investigated. To investigate the effects of exogenous BH4 administration on the dopaminergic system and related behaviors, we acutely injected mice with BH4 (50 mg/kg). Passage of BH4 through the blood brain barrier and accumulation in brain was measured using the in situ brain perfusion technique. DA release was then recorded using in-vivo micro-dialysis and motivation was evaluated through operant conditioning paradigms in basal condition and after an amphetamine (AMPH) injection. First, we showed that BH4 crosses the blood-brain barrier and that an acute peripheral injection of BH4 is sufficient to increase the concentrations of biopterins in the brain, without affecting BH4- and DA-related protein expression. Second, we report that this increase in BH4 enhanced AMPH-stimulated DA release in the nucleus accumbens. Finally, we found that BH4-induced DA release led to improved performance of a motivational task. Altogether, these findings suggest that BH4, through its action on the dopaminergic tone, could be used as a motivational enhancer.


Assuntos
Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Biopterinas/análogos & derivados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Dopaminérgicos/farmacologia , Dopamina/metabolismo , Motivação/efeitos dos fármacos , Anfetamina/administração & dosagem , Animais , Biopterinas/administração & dosagem , Biopterinas/farmacologia , Dopaminérgicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo
3.
eNeuro ; 4(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580417

RESUMO

Increasing evidence suggest that consumption of high-fat diet (HFD) can impact the maturation of brain circuits, such as during adolescence, which could account for behavioral alterations associated with obesity. In the present study, we used behavioral sensitization to amphetamine to investigate the effect of periadolescent HFD exposure (pHFD) in rats on the functionality of the dopamine (DA) system, a central actor in food reward processing. pHFD does not affect responding to an acute injection, however, a single exposure to amphetamine is sufficient to induce locomotor sensitization in pHFD rats. This is paralleled by rapid neurobiological adaptations within the DA system. In pHFD-exposed animals, a single amphetamine exposure induces an increase in bursting activity of DA cells in the ventral tegmental area (VTA) as well as higher DA release and greater expression of (tyrosine hydroxylase, TH) in the nucleus accumbens (NAc). Post-synaptically, pHFD animals display an increase in NAc D2 receptors and c-Fos expression after amphetamine injection. These findings highlight the vulnerability of DA system to the consumption of HFD during adolescence that may support deficits in reward-related processes observed in obesity.


Assuntos
Dieta Hiperlipídica , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmentar Ventral/metabolismo , Anfetamina/farmacologia , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica/efeitos adversos , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Locomoção/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Receptores de Dopamina D2/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos
4.
Psychoneuroendocrinology ; 50: 252-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25244639

RESUMO

Sex differences exist for stress reactivity as well as for the prevalence of depression, which is more frequent in women of reproductive age and often precipitated by stressful events. In animals, the differential effect of stress on male's and female's emotional behavior has been well documented. Crosstalk between the gonadal and stress hormones, in particular between estrogens and glucocorticoids, underlie these sex differences on stress vulnerability. We have previously shown that corticosteroid binding globulin (CBG) deficiency in a mouse model (Cbg k.o.) leads, in males, to an increased despair-like behavior caused by suboptimal corticosterone stress response. Because CBG displays a sexual dimorphism and is regulated by estrogens, we have now investigated whether it plays a role in the sex differences observed for emotional reactivity in mice. By analyzing Cbg k.o. and wild-type (WT) animals of both sexes, we detected sex differences in despair-like behavior in WT mice but not in Cbg k.o. animals. We showed through ovariectomy and estradiol (E2) replacement that E2 levels explain the sex differences found in WT animals. However, the manipulation of E2 levels did not affect the emotional behavior of Cbg k.o. females. As Cbg k.o. males, Cbg k.o. females have markedly reduced corticosterone levels across the circadian cycle and also after stress. Plasma free corticosterone levels in Cbg k.o. mice measured immediately after stress were blunted in both sexes compared to WT mice. A trend for higher mean levels of ACTH in Cbg k.o. mice was found for both sexes. The turnover of a corticosterone bolus was increased in Cbg k.o. Finally, the glucocorticoid-regulated immediate early gene early growth response 1 (Egr1) showed a blunted mRNA expression in the hippocampus of Cbg k.o. mutants while mineralocorticoid and glucocorticoid receptors presented sex differences but equivalent mRNA expression between genotypes. Thus, in our experimental conditions, sex differences for despair-like behavior in WT mice are explained by estrogens levels. Also, in both sexes, the presence of CBG is required to attain optimal glucocorticoid concentrations and normal emotional reactivity, although in females this is apparent only under low E2 concentrations. These findings suggest a complex interaction of CBG and E2 on emotional reactivity in females.


Assuntos
Corticosterona/sangue , Emoções/fisiologia , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Transcortina/metabolismo , Animais , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Estresse Psicológico/metabolismo , Transcortina/genética
5.
Transl Psychiatry ; 4: e437, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25203168

RESUMO

Understanding how malnutrition contributes to depression is building momentum. In the present study we unravel molecular and cellular mechanisms by which nutritional disturbances lead to impaired emotional behaviour in mice. Here we report that nutritional n-3 polyunsaturated fatty acids (PUFA) deficiency induces a chronic stress state reflected by disrupted glucocorticoid receptor (GR)-mediated signalling pathway along with hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. This hyperactivity in turn resulted in neuronal atrophy in the dorsolateral (dl)- and dorsomedial (dm)- prefrontal cortex (PFC) and subsequent mood-related behaviour alterations, similarly to chronic social defeat stress. Supplementation of n-3 PUFA prevented detrimental chronic social defeat stress-induced emotional and neuronal impairments by impeding HPA axis hyperactivity. These results indicate a role for dietary n-3 PUFA in the prevention of HPA axis dysfunction associated with the development of some neuropsychiatric disorders including depression.


Assuntos
Depressão/patologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Emoções/fisiologia , Ácidos Graxos Ômega-3/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Animais , Depressão/psicologia , Dominação-Subordinação , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/patologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Glucocorticoides/fisiologia , Transdução de Sinais/fisiologia
6.
Brain Behav Immun ; 34: 151-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994463

RESUMO

Within the central nervous system (CNS) the traditional role of microglia has been in brain infection and disease, phagocytosing debris and secreting factors to modify disease progression. This led to the concept of "resting" versus "activated" microglia. However, this is misleading because multiple phenotypic and morphological stages of microglia can influence neuronal structure and function in any condition and recent evidence extends their role to healthy brain homeostasis. The present work was thus aimed at reappraising the concept of morphofunctional activity of microglia in a context of peripheral acute immune challenge, where microglial activity is known to be modified, using the new state-of-the-art techniques available. To do so, mice were injected peripherally with lipopolysaccharide, a potent inducer of cerebral inflammation, and we assessed early cytokines production, phenotype, motility and morphology of microglial cells. Our results showed that LPS induced a widespread inflammatory response both peripherally and centrally, as revealed by the quantification of cytokines levels. We also found an alteration of microglial motility that was confirmed by in vivo studies showing an overall reduction of microglial processes length in the hippocampus of LPS-treated animals. Finally, analysis of various surface receptors expression revealed that LPS did not significantly impact microglial phenotype 2h after the injection but rather induced an increase of CD11b(+)/CD45(high) cells. These latter may be at the vasculature, at the CNS vicinity, or may have invaded the CNS.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/citologia , Microglia/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...