Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514654

RESUMO

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
3.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36604603

RESUMO

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

4.
Nat Commun ; 13(1): 3102, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660742

RESUMO

Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named "dopamine hub synapses". At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity.


Assuntos
Dopamina , Sinapses , Animais , Corpo Estriado/fisiologia , Dopamina/metabolismo , Camundongos , Recompensa , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
5.
Front Nutr ; 9: 811843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178422

RESUMO

BACKGROUND: The mechanisms leading to a loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have multifactorial origins. In this context, nutrition is currently investigated as a modifiable environmental factor for the prevention of PD. In particular, initial studies revealed the deleterious consequences of vitamin A signaling failure on dopamine-related motor behaviors. However, the potential of vitamin A supplementation itself to prevent neurodegeneration has not been established yet. OBJECTIVE: The hypothesis tested in this study is that preventive vitamin A supplementation can protect DA neurons in a rat model of PD. METHODS: The impact of a 5-week preventive supplementation with vitamin A (20 IU/g of diet) was measured on motor and neurobiological alterations induced by 6-hydroxydopamine (6-OHDA) unilateral injections in the striatum of rats. Rotarod, step test and cylinder tests were performed up to 3 weeks after the lesion. Post-mortem analyses (retinol and monoamines dosages, western blots, immunofluorescence) were performed to investigate neurobiological processes. RESULTS: Vitamin A supplementation improved voluntary movements in the cylinder test. In 6-OHDA lesioned rats, a marked decrease of dopamine levels in striatum homogenates was measured. Tyrosine hydroxylase labeling in the SNc and in the striatum was significantly decreased by 6-OHDA injection, without effect of vitamin A. By contrast, vitamin A supplementation increased striatal expression of D2 and RXR receptors in the striatum of 6-OHDA lesioned rats. CONCLUSIONS: Vitamin A supplementation partially alleviates motor alterations and improved striatal function, revealing a possible beneficial preventive approach for PD.

6.
Glia ; 70(1): 50-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519378

RESUMO

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Encéfalo , Camundongos , Bainha de Mielina , Neurogênese , Oligodendroglia
7.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959434

RESUMO

Depressive disorders are a major public health concern. Despite currently available treatment options, their prevalence steadily increases, and a high rate of therapeutic failure is often reported, together with important antidepressant-related side effects. This highlights the need to improve existing therapeutic strategies, including by using nutritional interventions. In that context, saffron recently received particular attention for its beneficial effects on mood, although the underlying mechanisms are poorly understood. This study investigated in mice the impact of a saffron extract (Safr'Inside™; 6.25 mg/kg, per os) on acute restraint stress (ARS)-induced depressive-like behavior and related neurobiological alterations, by focusing on hypothalamic-pituitary-adrenal axis, inflammation-related metabolic pathways, and monoaminergic systems, all known to be altered by stress and involved in depressive disorder pathophysiology. When given before stress onset, Safr'Inside administration attenuated ARS-induced depressive-like behavior in the forced swim test. Importantly, it concomitantly reversed several stress-induced monoamine dysregulations and modulated the expression of key enzymes of the kynurenine pathway, likely reducing kynurenine-related neurotoxicity. These results show that saffron pretreatment prevents the development of stress-induced depressive symptoms and improves our understanding about the underlying mechanisms, which is a central issue to validate the therapeutic relevance of nutritional interventions with saffron in depressed patients.

8.
Sci Adv ; 7(43): eabg5970, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669474

RESUMO

Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate N-methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.

9.
Cell Metab ; 31(4): 755-772.e7, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142670

RESUMO

Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain region for the modulation of motivation. Strikingly, transgenically preventing n-3 PUFA deficiency selectively in D2-expressing neurons normalizes MSN collateral inhibition and enhances motivation. These results constitute the first demonstration of a causal link between a behavioral deficit and n-3 PUFA decrease in a discrete neuronal population and suggest that lower n-3 PUFA biostatus in psychopathologies could participate in the etiology of reward-related symptoms.


Assuntos
Ácidos Graxos Ômega-3/deficiência , Motivação , Neurônios , Núcleo Accumbens , Receptores de Dopamina D2/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia
10.
Obesity (Silver Spring) ; 27(2): 255-263, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597761

RESUMO

OBJECTIVE: A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS: Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS: Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS: These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.


Assuntos
Condicionamento Operante/fisiologia , Dieta Hiperlipídica/métodos , Animais , Masculino , Camundongos
11.
Neuropharmacology ; 129: 16-25, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29146502

RESUMO

Adolescence represents a critical period characterized by major neurobiological changes. Chronic stimulation of the reward system during adolescence might constitute an important factor of vulnerability to pathological development. Increasing evidences suggest that adolescent overconsumption of sweet palatable foods impact reward-based processes. However, the neurobiological bases of these deficits remain poorly understood. Previous studies have demonstrated motivational deficits for palatable foods after sweet diet exposure during adolescence that might involve the dopamine (DA) system, a central actor in incentive processes. In the present study, the impact of adolescent sugar overconsumption on the sensitivity of the DA system was tested using pharmacological (Experiment 1) and receptor expression approaches (Experiment 2). Adolescent rats received free and continuous access to 5% sucrose solution from post-natal day 30-46. At adulthood, the functionality of the DA system in motivational processes was tested using systemic injections of specific DA receptors D1R or D2R agonists and antagonists during a motivation-dependent progressive ratio task (Experiment 1). Sucrose-exposed rats showed a lower motivation for saccharin and a decreased sensitivity to the effects of both D1R and D2R stimulation and blockade. In Experiment 2, Sucrose-exposed animals presented a lower expression of both D1R and D2R in the nucleus accumbens, a central brain region for incentive processes, but not in dorsal striatum or prefrontal cortex. These findings highlight the impact of sucrose overconsumption during adolescence on DA system that may support deficits in reward-related disorders.


Assuntos
Dopamina/deficiência , Motivação/efeitos dos fármacos , Motivação/fisiologia , Açúcares/metabolismo , Fatores Etários , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Dopaminérgicos/metabolismo , Esquema de Reforço , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
12.
Neural Plast ; 2016: 8574830, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057368

RESUMO

Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.


Assuntos
Emoções/fisiologia , Ácidos Graxos Ômega-3 , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Animais , Forma Celular/fisiologia , Hipocampo/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Neurônios/citologia , Sistema Hipófise-Suprarrenal/metabolismo
13.
Brain Behav Immun ; 26(5): 721-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22085587

RESUMO

Converging epidemiological studies suggest that dietary essential n-3 polyunsaturated fatty acid (PUFA) are likely to be involved in the pathogenesis of mood and cognitive disorders linked to aging. The question arises as to whether the decreased prevalence of these symptoms in the elderly with high n-3 PUFA consumption is also associated with improved central inflammation, i.e. cytokine activation, in the brain. To answer this, we measured memory performance and emotional behavior as well as cytokine synthesis and PUFA level in the spleen and the cortex of adult and aged mice submitted to a diet with an adequate supply of n-3 PUFA in form of α-linolenic acid (α-LNA) or a n-3 deficient diet. Our results show that docosahexaenoic acid (DHA), the main n-3 PUFA in the brain, was higher in the spleen and cortex of n-3 adequate mice relative to n-3 deficient mice and this difference was maintained throughout life. Interestingly, high level of brain DHA was associated with a decrease in depressive-like symptoms throughout aging. On the opposite, spatial memory was maintained in adult but not in aged n-3 adequate mice relative to n-3 deficient mice. Furthermore, increased interleukin-6 (IL-6) and decreased IL-10 expression were found in the cortex of aged mice independently of the diets. All together, our results suggest that n-3 PUFA dietary supply in the form of α-LNA is sufficient to protect from deficits in emotional behavior but not from memory disruption and brain proinflammatory cytokine expression linked to age.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Citocinas/biossíntese , Depressão/prevenção & controle , Dieta , Ácidos Graxos Ômega-3/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Emoções/fisiologia , Ácidos Graxos Insaturados/sangue , Feminino , Interleucina-10/biossíntese , Interleucina-10/sangue , Interleucina-6/biossíntese , Interleucina-6/sangue , Fígado/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fosfolipídeos/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo
14.
Nat Neurosci ; 14(3): 345-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278728

RESUMO

The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Dieta , Endocanabinoides , Ácidos Graxos Ômega-3/metabolismo , Desnutrição/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal/fisiologia , Emoções/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia
15.
Br J Nutr ; 102(10): 1390-4, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19930773

RESUMO

Chronic low-grade inflammation is a characteristic of ageing that may lead to alterations in health status and quality of life. In addition to intrinsic biological factors, recent data suggest that poor nutritional habits may largely contribute to this condition. The present study aimed at assessing mental and physical components of quality of life and at determining their relationship to vitamin E status, inflammation and tryptophan (TRP) metabolism in the elderly. Sixty-nine elderly subjects recruited from the Three-City cohort study participated in the study. Quality of life was assessed using the medical outcomes study thirty-six-item short-form health survey (SF-36). Biological assays included the measurement of plasma vitamin E (alpha-tocopherol), inflammatory markers, including IL-6 and C-reactive protein, and TRP metabolism. Results showed that participants with poor physical health status, as assessed by the SF-36, exhibited lower circulating concentrations of alpha-tocopherol together with increased concentrations of inflammatory markers. Similarly, poor mental health scores on the SF-36 were associated with lower concentrations of alpha-tocopherol, but also with decreased concentrations of TRP. These findings indicate that nutritional status, notably as it relates to vitamin E, is associated with immune function and quality of life in the elderly.


Assuntos
Inflamação/prevenção & controle , Vitamina E/farmacologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Humanos , Masculino , Estado Nutricional , Qualidade de Vida
16.
Eur J Neurosci ; 28(9): 1877-86, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18973601

RESUMO

Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cell membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 (also known as omega3) PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of the IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice than n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6-knockout (IL-6-KO) mice and failed to induce STAT3 activation in the brain of IL-6-KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection.


Assuntos
Encéfalo/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Comportamento de Doença/fisiologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/imunologia , Encéfalo/fisiopatologia , Tronco Encefálico/imunologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Feminino , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Comportamento Social
17.
J Neurochem ; 105(2): 296-307, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18021297

RESUMO

Recognition of lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, by microglia occurs through its binding to specific receptors, cluster of differentiation 14 and toll-like receptor-4. LPS binding to these receptors triggers the synthesis of proinflammatory cytokines that coordinate the brain innate immune response to protect the CNS of the infection. Docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid highly incorporated in the brain, is a potent immunomodulator. In this study, we investigated whether DHA modulates LPS receptor localization and, as a consequence, LPS-induced signaling pathway and proinflammatory cytokine production. We demonstrated that DHA, when added exogenously, is specifically enriched in membrane phospholipids, but not in raft lipids of microglial cells. DHA incorporation in membrane impaired surface presentation of LPS receptors cluster of differentiation 14 and toll-like receptor-4, but not their membrane subdomain localization. LPS-induced nuclear factor kappa B activation was inhibited by DHA, hence, LPS-induced proinflammatory cytokine synthesis of interleukin-1beta and tumor necrosis factor alpha was strongly attenuated. We suggest that DHA is highly anti-inflammatory by targeting LPS receptor surface location, therefore reducing LPS action on microglia. This effect represents a new insight by which DHA modulates in the brain the expression of proinflammatory cytokines in response to bacterial product.


Assuntos
Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Receptores de Lipopolissacarídeos/fisiologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Análise de Variância , Animais , Linhagem Celular Transformada , Regulação para Baixo/efeitos dos fármacos , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo/métodos , Receptores de Lipopolissacarídeos/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/fisiologia , Camundongos , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa
18.
Brain Res ; 1098(1): 26-32, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16764840

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor abundantly expressed in the postnatal brain that is involved in the differentiation of cultured astrocytes. Thus far, the cellular identity and anatomical distribution of STAT3-expressing cells in the postnatal brain is poorly known. This study identifies the cell type(s), anatomical location, and temporal distribution of STAT3-expressing cells by using immunohistochemistry and confocal microscopy on postnatal day 3 (P3), 10 (P10), and 21 (P21) rat brain sections. Furthermore, the phosphorylation of STAT3 on tyrosine and serine residues was analyzed at these different stages by immunoprecipitation followed by Western blot. STAT3 immunoreactivity was observed in the cytoplasm and nucleus of many maturating astrocytes positive for nestin (at P3) or positive for GFAP (at P10) distributed throughout the white and grey matter. Moreover, robust nuclear immunoreactivity was observed in brainstem motoneurons. Phosphorylation on tyrosine and serine was observed at P3 and increased at P10, which suggests an augmented activation of STAT3 at the mid-postnatal period. At P21, STAT3 immunoreactivity dramatically decreased to remain visible only in the cytoplasm of white matter astrocytes and hypothalamic and brainstem neuronal groups. Furthermore, while the phosphorylation of tyrosine residues tended to decrease, that of serine residues further increased. In summary, our study reveals a complex regulation of STAT3 phosphorylation in the postnatal brain and provides in vivo evidence of the specific expression of STAT3 in maturating astrocytes and brainstem motoneurons.


Assuntos
Animais Recém-Nascidos/metabolismo , Química Encefálica/genética , Encéfalo/citologia , Fator de Transcrição STAT3/biossíntese , Animais , Astrócitos/fisiologia , Western Blotting , Diferenciação Celular , Movimento Celular , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Imuno-Histoquímica , Imunoprecipitação , Fenótipo , Fosforilação , Ratos , Ratos Wistar , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...