Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611029

RESUMO

The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38503502

RESUMO

Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)/retinoic acid receptor α (RARA) fusion oncoprotein. Over the years, it has emerged as a model system to understand how this simple (and sometimes sole) genetic alteration can transform hematopoietic progenitors through the acquisition of dominant-negative properties toward both transcriptional control by nuclear receptors and PML-mediated senescence. The fortuitous identification of two drugs, arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA), that respectively bind PML and RARA to initiate PML/RARA degradation, has allowed an unprecedented dissection of the cellular and molecular mechanisms involved in patients' cure by the ATO/ATRA combination. This analysis has unraveled the dual and complementary roles of RARA and PML in both APL initiation and cure by the ATRA/ATO combination. We discuss how some of the features unraveled by APL studies may be more broadly applicable to some other forms of leukemia. In particular, the functional synergy between drugs that promote differentiation and those that initiate apoptosis/senescence to impede self-renewal could pave the way to novel curative combinations.

3.
Leukemia ; 38(4): 851-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326409

RESUMO

Neutrophils are key component of the innate immune system in vertebrates. Diverse transcription factors and cofactors act in a well-coordinated manner to ensure proper neutrophil development. Dysregulation of the transcriptional program triggering neutrophil differentiation is associated with various human hematologic disorders such as neutropenia, neutrophilia, and leukemia. In the current study we show the zinc finger protein Znf687 is a lineage-preferential transcription factor, whose deficiency leads to an impaired neutrophil development in zebrafish. Mechanistically, Znf687 functions as a negative regulator of gfi1aa, a pivotal modulator in terminal granulopoiesis, to regulate neutrophil maturation. Moreover, we found BRD4, an important epigenetic regulator, directly interacts with ZNF687 in neutrophils. Deficiency of brd4 results in similar defective neutrophil development as observed in znf687 mutant zebrafish. Biochemical and genetic analyses further reveal that instead of serving as a canonical transcriptional coactivator, Brd4 directly interacts and bridges Znf687 and Smrt nuclear corepressor on gfi1aa gene's promoter to exert transcription repression. In addition, the ZNF687-BRD4-SMRT-GFI1 transcriptional regulatory network is evolutionary conserved in higher vertebrate. Overall, our work indicates Znf687 and Brd4 are two novel master regulators in promoting terminal granulopoiesis.


Assuntos
Neutrófilos , Fatores de Transcrição , Animais , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neutrófilos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
4.
Cancer Discov ; 13(12): 2548-2565, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655965

RESUMO

PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE: Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Humanos , Arsênio/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Cisteína , Arsenicais/farmacologia , Óxidos/farmacologia , Trióxido de Arsênio/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas Oncogênicas , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
5.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37382966

RESUMO

PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress, PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress. Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.


Assuntos
Leucemia , Humanos , Apoptose , Cinética , Estresse Oxidativo , Processamento de Proteína Pós-Traducional
6.
Blood Cancer J ; 13(1): 67, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137914

RESUMO

Adult T cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic infection with human T cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax initiates T cell transformation through activation of critical cellular pathways, including NF-κB. Unexpectedly, Tax protein is not detectable in most ATL cells, in contrast to the HTLV-1 HBZ protein which antagonizes Tax effects. Here, we demonstrate that primary ATL cells from patients with acute or chronic ATL express very low levels of Tax mRNA and protein. Critically, survival of these primary ATL cells is dependent on continued Tax expression. Mechanistically, Tax extinction results in reversal of NF-κB activation, P53/PML activation and apoptosis. Tax drives interleukin-10 (IL-10) expression and recombinant IL-10 rescues the survival of tax-depleted primary ATL cells. These results demonstrate the critical role of continued Tax and IL-10 expression for the survival of primary ATL cells, highlighting their relevance as therapeutic targets.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Adulto , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , NF-kappa B/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo
7.
J Mol Cell Biol ; 15(3)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36948605

RESUMO

YPEL5 is a member of the Yippee-like (YPEL) gene family that is evolutionarily conserved in eukaryotic species. To date, the physiological function of YPEL5 has not been assessed due to a paucity of genetic animal models. Here, using CRISPR/Cas9-mediated genome editing, we generated a stable ypel5-/- mutant zebrafish line. Disruption of ypel5 expression leads to liver enlargement associated with hepatic cell proliferation. Meanwhile, hepatic metabolism and function are dysregulated in ypel5-/- mutant zebrafish, as revealed by metabolomic and transcriptomic analyses. Mechanistically, Hnf4a is identified as a crucial downstream mediator that is positively regulated by Ypel5. Zebrafish hnf4a overexpression could largely rescue ypel5 deficiency-induced hepatic defects. Furthermore, PPARα signaling mediates the regulation of Hnf4a by Ypel5 through directly binding to the transcriptional enhancer of the Hnf4a gene. Herein, this work demonstrates an essential role of Ypel5 in hepatocyte proliferation and function and provides the first in vivo evidence for a physiological role of the ypel5 gene in vertebrates.

9.
Elife ; 112022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205309

RESUMO

Macrophages and their precursor cells, monocytes, are the first line of defense of the body against foreign pathogens and tissue damage. Although the origins of macrophages are diverse, some common transcription factors (such as PU.1) are required to ensure proper development of monocytes/macrophages. Here, we report that the deficiency of zbtb14, a transcription repressor gene belonging to ZBTB family, leads to an aberrant expansion of monocyte/macrophage population in zebrafish. Mechanistically, Zbtb14 functions as a negative regulator of pu.1, and SUMOylation on a conserved lysine is essential for the repression activity of Zbtb14. Moreover, a serine to phenylalanine mutation found in an acute myeloid leukemia (AML) patient could target ZBTB14 protein to autophagic degradation. Hence, ZBTB14 is a newly identified gene implicated in both normal and malignant myelopoiesis.


Assuntos
Monócitos , Peixe-Zebra , Animais , Diferenciação Celular/genética , Lisina/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenilalanina/metabolismo , Serina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
11.
Nat Commun ; 13(1): 5726, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175410

RESUMO

Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.


Assuntos
Arsênio , Sumoilação , Animais , Elementos de DNA Transponíveis , Células-Tronco Embrionárias , Camundongos , Corpos Nucleares , Fatores de Transcrição
12.
Leukemia ; 36(6): 1585-1595, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474100

RESUMO

By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.


Assuntos
Cistina , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Cisteína , Cistina/metabolismo , Cistina/uso terapêutico , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
13.
Leukemia ; 36(5): 1306-1312, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246604

RESUMO

According to a hierarchical model, targeting leukemia-initiating cells (LICs) was speculated to achieve complete remission (CR) or cure. Nonetheless, increasing evidence emphasized the plasticity of differentiated blasts undergoing interconversion into LICs. We exploited murine models of acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia driven by the promyelocytic leukemia/retinoic acid receptor (PML-RARα) oncofusion protein, which recruits histone deacetylase (HDAC)-containing complexes. We studied APLs with different LIC frequencies and investigated the effect of two HDAC inhibitors: valproic acid (VPA), with relative selectivity towards class I HDAC enzymes and vorinostat/suberoylanilide hydroxamic acid (SAHA) (pan-HDAC inhibitor) in combination with all-trans retinoic acid (ATRA), on the bulk APL cells and APL LICs. Indeed, we found that while VPA differentiates the bulk APL cells, SAHA selectively targets LICs. ATRA + VPA + SAHA combination efficiently induced CR in an APL model with lower LIC frequency. Substituting ATRA with synthetic retinoids as etretinate which promotes APL differentiation without downregulating PML/RARα compromised the therapeutic benefit of ATRA + VPA + SAHA regimen. Altogether, our study emphasizes the therapeutic power of co-targeting the plasticity and heterogeneity of cancer -herein demonstrated by tackling LICs and bulk leukemic blasts - to achieve and maintain CR.


Assuntos
Antineoplásicos , Leucemia Promielocítica Aguda , Animais , Antineoplásicos/uso terapêutico , Diferenciação Celular , Erradicação de Doenças , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Ácido Valproico/farmacologia
14.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269436

RESUMO

Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Animais , Mamíferos/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Virais/metabolismo
16.
Biomedicines ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829934

RESUMO

BET inhibitors (BETi) including OTX015 (MK-8628) and JQ1 demonstrated antileukemic activity including NPM1c AML cells. Nevertheless, the biological consequences of BETi in NPM1c AML were not fully investigated. Even if of better prognosis AML patients with NPM1c may relapse and treatment remains difficult. Differentiation-based therapy by all trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) demonstrated activity in NPM1c AML. We found that BETi, similar to ATO + ATRA, induced differentiation and apoptosis which was TP53 independent in the NPM1c cell line OCI-AML3 and primary cells. Furthermore, BETi induced proteasome-dependent degradation of NPM1c. BETi degraded NPM1c in the cytosol while BRD4 is degraded in the nucleus which suggests that restoration of the NPM1/BRD4 equilibrium in the nucleus of NPM1c cells is essential for the efficacy of BETi. While ATO + ATRA had significant biological activity in NPM1c IMS-M2 cell line, those cells were resistant to BETi. Gene profiling revealed that IMS-M2 cells probably resist to BETi by upregulation of LSC pathways independently of the downregulation of a core BET-responsive transcriptional program. ATO + ATRA downregulated a NPM1c specific HOX gene signature while anti-leukemic effects of BETi appear HOX gene independent. Our preclinical results encourage clinical testing of BETi in NPM1c AML patients.

17.
PLoS Genet ; 17(8): e1009693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351909

RESUMO

The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.


Assuntos
Proteínas de Ligação a DNA/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Células HL-60 , Humanos , Leucopoese , Masculino , Proteólise , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
18.
Blood Cancer Discov ; 2(4): 300-301, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34230915

RESUMO

In this issue, Maimaitiyiming and colleagues demonstrate thermic stress-induced PML/RARA oncogenic fusion protein destabilization driven by corepressor aggregation. Hyperthermia synergizes with PML/RARA degradation by ATO and may circumvent ATO-resistance in historical APL patients. This novel approach could be extended to other corepressor-associated oncogenic fusion proteins.


Assuntos
Arsenicais , Hipertermia Induzida , Leucemia Promielocítica Aguda , Trióxido de Arsênio , Arsenicais/farmacologia , Humanos , Leucemia Promielocítica Aguda/metabolismo , Óxidos/farmacologia , Proteólise
19.
Cancer Discov ; 11(12): 3198-3213, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301789

RESUMO

Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE: ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Dactinomicina/farmacologia , Dactinomicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
20.
Leukemia ; 35(10): 2784-2798, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34131282

RESUMO

The most frequent genetic alteration in acute myeloid leukemia (AML) is the mutation of nucleophosmin 1 (NPM1). Yet, its downstream oncogenic routes are not fully understood. Here, we report the identification of one long noncoding RNA (lncRNA) overexpressed in NPM1-mutated AML patients (named LONA) whose intracellular localization inversely reflects that of NPM1. While NPM1 is nuclear and LONA cytoplasmic in wild-type NPM1 AML cells, LONA becomes nuclear as mutant NPM1 moves toward the cytoplasm. Gain or loss of function combined with a genome-wide RNA-seq search identified a set of LONA mRNA targets encoding proteins involved in myeloid cell differentiation (including THSB1, MAFB, and ASB2) and interaction with its microenvironment. Consistently, LONA overexpression in mutant NPM1 established cell lines and primary AML cells exerts an anti-myeloid differentiation effect, whilst it exerts an opposite pro-myeloid differentiation effect in a wild type NPM1 setting. In vivo, LONA overexpression acts as an oncogenic lncRNA reducing the survival of mice transplanted with AML cells and rendering AML tumors more resistant to AraC chemotherapy.These data indicate that mutation-dependent nuclear export of NPM1 leads to nuclear retention and consequent oncogenic functions of the overexpressed lncRNA LONA, thus uncovering a novel NPM1 mutation-dependent pathway in AML pathogenesis.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Citoplasma/genética , Regulação Leucêmica da Expressão Gênica/genética , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nucleofosmina , RNA Mensageiro/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...