Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biochem Eng Biotechnol ; 175: 93-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-30397726

RESUMO

Yeasts are valuable hosts for recombinant protein production, as these unicellular eukaryotes are easy to handle, grow rapidly to a high cell density on cost-effective defined media, often offer a high space-time yield, and are able to perform posttranslational modifications. However, a key difference between yeasts and mammalian cells involves the type of glycosylation structures, which hampers the use of yeasts for the production of many biopharmaceuticals. Glycosylation is not only important for the folding process of most recombinant proteins; it has a large impact on pharmacokinetics and pharmacodynamics of the therapeutic proteins as well. Yeasts' hypermannosylated glycosyl structures in some cases can evoke immune responses and lead to rapid clearance of the therapeutic protein from the blood. This chapter highlights the efforts made so far regarding the glyco-engineering of N- and O-type glycosylation, removing or reducing yeast-specific glycans. In some cases, this is combined with the introduction of humanized glycosylation pathways. After many years of patient development to overcome remaining challenges, these efforts have now culminated in effective solutions that should allow yeasts to reclaim the primary position in biopharmaceutical manufacturing that they enjoyed in the early days of biotechnology. Graphical Abstract.


Assuntos
Glicoproteínas , Saccharomyces cerevisiae , Animais , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Pichia/genética , Pichia/metabolismo , Polissacarídeos , Engenharia de Proteínas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
2.
Traffic ; 22(3): 48-63, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33263222

RESUMO

The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.


Assuntos
Complexo de Golgi , Saccharomyces cerevisiae , Animais , Complexo de Golgi/metabolismo , Proteínas/metabolismo , Saccharomycetales , Via Secretória
3.
Biotechnol Bioeng ; 117(8): 2479-2488, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32374435

RESUMO

The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manß-1,2-Manß-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.


Assuntos
Glicoproteínas , Polissacarídeos , Engenharia de Proteínas/métodos , Saccharomycetales , Biologia Sintética/métodos , Animais , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Camundongos , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
Methods Mol Biol ; 1321: 103-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082218

RESUMO

Pichia pastoris is an important host for recombinant protein production. As a protein production platform, further development for therapeutic glycoproteins has been hindered by the high-mannose-type N-glycosylation common to yeast and fungi. Such N-glycans can complicate downstream processing, might be immunogenic or cause the rapid clearance of the glycoprotein from circulation. In recent years, much effort has gone to engineering the N-glycosylation pathway of Pichia pastoris to mimic the human N-glycosylation pathway. This can be of pivotal importance to generate the appropriate glycoforms of therapeutically relevant glycoproteins or to gain a better understanding of structure-function relationships.This chapter describes the methodology to create such glyco-engineered Pichia pastoris strains using the GlycoSwitch(®). This strategy consists of the disruption of an endogenous glycosyltransferase and the heterologous expression of a glycosidase or glycosyltransferase targeted to the Endoplasmic Reticulum or the Golgi of the host. For each step in the process, we describe the transformation procedure, small-scale screening and we also describe how to perform DNA-Sequencer-Aided Fluorophore-Assisted Capillary Electrophoresis (DSA-FACE) to select for clones with the appropriate N-glycosylation profile. The steps described in this chapter can be followed in an iterative fashion in order to generate clones of Pichia pastoris expressing heterologous proteins with humanized N-glycans.


Assuntos
Proteínas Fúngicas/genética , Pichia/genética , Proteínas Recombinantes/genética , Retículo Endoplasmático/genética , Glicoproteínas/genética , Glicosilação , Complexo de Golgi/genética , Humanos , Manose/genética , Polissacarídeos/genética , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...