Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998089

RESUMO

Putting sensors on the bodies of animals to automate animal activity recognition and gain insight into their behaviors can help improve their living conditions. Although previous hard-coded algorithms failed to classify complex time series obtained from accelerometer data, recent advances in deep learning have improved the task of animal activity recognition for the better. However, a comparative analysis of the generalizing capabilities of various models in combination with different input types has yet to be addressed. This study experimented with two techniques for transforming the segmented accelerometer data to make them more orientation-independent. The methods included calculating the magnitude of the three-axis accelerometer vector and calculating the Discrete Fourier Transform for both sets of three-axis data as the vector magnitude. Three different deep learning models were trained on this data: a Multilayer Perceptron, a Convolutional Neural Network, and an ensemble merging both called a hybrid Convolutional Neural Network. Besides mixed cross-validation, every model and input type combination was assessed on a goat-wise leave-one-out cross-validation set to evaluate its generalizing capability. Using orientation-independent data transformations gave promising results. A hybrid Convolutional Neural Network with L2-norm as the input combined the higher classification accuracy of a Convolutional Neural Network with the lower standard deviation of a Multilayer Perceptron. Most of the misclassifications occurred for behaviors that display similar accelerometer traces and minority classes, which could be improved in future work by assembling larger and more balanced datasets.

2.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676101

RESUMO

ECG classification or heartbeat classification is an extremely valuable tool in cardiology. Deep learning-based techniques for the analysis of ECG signals assist human experts in the timely diagnosis of cardiac diseases and help save precious lives. This research aims at digitizing a dataset of images of ECG records into time series signals and then applying deep learning (DL) techniques on the digitized dataset. State-of-the-art DL techniques are proposed for the classification of the ECG signals into different cardiac classes. Multiple DL models, including a convolutional neural network (CNN), a long short-term memory (LSTM) network, and a self-supervised learning (SSL)-based model using autoencoders are explored and compared in this study. The models are trained on the dataset generated from ECG plots of patients from various healthcare institutes in Pakistan. First, the ECG images are digitized, segmenting the lead II heartbeats, and then the digitized signals are passed to the proposed deep learning models for classification. Among the different DL models used in this study, the proposed CNN model achieves the highest accuracy of ∼92%. The proposed model is highly accurate and provides fast inference for real-time and direct monitoring of ECG signals that are captured from the electrodes (sensors) placed on different parts of the body. Using the digitized form of ECG signals instead of images for the classification of cardiac arrhythmia allows cardiologists to utilize DL models directly on ECG signals from an ECG machine for the real-time and accurate monitoring of ECGs.


Assuntos
Arritmias Cardíacas , Aprendizado Profundo , Eletrocardiografia , Redes Neurais de Computação , Humanos , Eletrocardiografia/métodos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/classificação , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA