Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 2(5): 399-406, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855690

RESUMO

Herein, we propose a novel computational protocol that enables calculating free energies with improved accuracy by combining the best available techniques for enthalpy and entropy calculation. While the entropy is described by enhanced sampling molecular dynamics techniques, the energy is calculated using ab initio methods. We apply the method to assess the stability of isobutene adsorption intermediates in the zeolite H-SSZ-13, a prototypical problem that is computationally extremely challenging in terms of calculating enthalpy and entropy. We find that at typical operating conditions for zeolite catalysis (400 °C), the physisorbed π-complex, and not the tertiary carbenium ion as often reported, is the most stable intermediate. This method paves the way for sampling-based techniques to calculate the accurate free energies in a broad range of chemistry-related disciplines, thus presenting a big step forward toward predictive modeling.

2.
ACS Catal ; 10(15): 8904-8915, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32923027

RESUMO

The methanol-to-hydrocarbon process is known to proceed autocatalytically in H-ZSM-5 after an induction period where framework methoxy species are formed. In this work, we provide mechanistic insight into the framework methylation within H-ZSM-5 at high methanol loadings and varying acid site densities by means of first-principles molecular dynamics simulations. The molecular dynamics simulations show that stable methanol clusters form in the zeolite pores, and these clusters commonly deprotonate the active site; however, the cluster size is dependent on the temperature and acid site density. Enhanced sampling molecular dynamics simulations give evidence that the barrier for methanol conversion is significantly affected by the neighborhood of an additional acid site, suggesting that cooperative effects influence methanol clustering and reactivity. The insights obtained are important steps in optimizing the catalyst and engineering the induction period of the methanol-to-hydrocarbon process.

3.
J Am Chem Soc ; 141(37): 14823-14842, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31464134

RESUMO

A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(µ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites.

4.
ACS Catal ; 9(6): 5645-5650, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31205799

RESUMO

The active site in ethene oligomerization catalyzed by Ni-zeolites is proposed to be a mobile Ni(II) complex, based on density functional theory-based molecular dynamics (DFT-MD) simulations corroborated by continuous-flow experiments on Ni-SSZ-24 zeolite. The results of the simulations at operating conditions show that ethene molecules reversibly mobilize the active site as they exchange with the zeolite as ligands on Ni during reaction. Microkinetic modeling was conducted on the basis of free-energy profiles derived with DFT-MD for oligomerization on these mobile [(ethene)2-Ni-alkyl]+ species. The model reproduces the experimentally observed high selectivity to dimerization and indicates that the mechanism is consistent with the observed second-order rate dependence on ethene pressure.

5.
ACS Catal ; 8(10): 9579-9595, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30319885

RESUMO

Catalytic alkene cracking on H-ZSM-5 involves a complex reaction network with many possible reaction routes and often elusive intermediates. Herein, advanced molecular dynamics simulations at 773 K, a typical cracking temperature, are performed to clarify the nature of the intermediates and to elucidate dominant cracking pathways at operating conditions. A series of C4-C8 alkene intermediates are investigated to evaluate the influence of chain length and degree of branching on their stability. Our simulations reveal that linear, secondary carbenium ions are relatively unstable, although their lifetime increases with carbon number. Tertiary carbenium ions, on the other hand, are shown to be very stable, irrespective of the chain length. Highly branched carbenium ions, though, tend to rapidly rearrange into more stable cationic species, either via cracking or isomerization reactions. Dominant cracking pathways were determined by combining these insights on carbenium ion stability with intrinsic free energy barriers for various octene ß-scission reactions, determined via umbrella sampling simulations at operating temperature (773 K). Cracking modes A (3° → 3°) and B2 (3° → 2°) are expected to be dominant at operating conditions, whereas modes B1 (2° → 3°), C (2° → 2°), D2 (2° → 1°), and E2 (3° → 1°) are expected to be less important. All ß-scission modes in which a transition state with primary carbocation character is involved have high intrinsic free energy barriers. Reactions starting from secondary carbenium ions will contribute less as these intermediates are short living at the high cracking temperature. Our results show the importance of simulations at operating conditions to properly evaluate the carbenium ion stability for ß-scission reactions and to assess the mobility of all species in the pores of the zeolite.

6.
Nat Chem ; 10(8): 897, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29991809

RESUMO

In the version of this Article originally published, on the right side of Fig. 4b, the 'Aromatic cycle' label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article.

7.
Nat Chem ; 10(8): 804-812, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941905

RESUMO

The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure-performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite 'ZSM-5' for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.

8.
Chem Sci ; 9(10): 2723-2732, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732056

RESUMO

UiO-66 is a showcase example of an extremely stable metal-organic framework, which maintains its structural integrity during activation processes such as linker exchange and dehydration. The framework can even accommodate a substantial number of defects without compromising its stability. These observations point to an intrinsic dynamic flexibility of the framework, related to changes in the coordination number of the zirconium atoms. Herein we follow the dynamics of the framework in situ, by means of enhanced sampling molecular dynamics simulations such as umbrella sampling, during an activation process, where the coordination number of the bridging hydroxyl groups capped in the inorganic Zr6(µ3-O)4(µ3-OH)4 brick is reduced from three to one. Such a reduction in the coordination number occurs during the dehydration process and in other processes where defects are formed. We observe a remarkable fast response of the system upon structural changes of the hydroxyl group. Internal deformation modes are detected, which point to linker decoordination and recoordination. Detached linkers may be stabilized by hydrogen bonds with hydroxyl groups of the inorganic brick, which gives evidence for an intrinsic dynamic acidity even in the absence of protic guest molecules. Our observations yield a major step forward in the understanding on the molecular level of activation processes realized experimentally but that is hard to track on a purely experimental basis.

9.
Chemistry ; 21(26): 9385-96, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25951509

RESUMO

The methanol-to-olefin process is a showcase example of complex zeolite-catalyzed chemistry. At real operating conditions, many factors affect the reactivity, such as framework flexibility, adsorption of various guest molecules, and competitive reaction pathways. In this study, the strength of first principle molecular dynamics techniques to capture this complexity is shown by means of two case studies. Firstly, the adsorption behavior of methanol and water in H-SAPO-34 at 350 °C is investigated. Hereby an important degree of framework flexibility and proton mobility was observed. Secondly, the methylation of benzene by methanol through a competitive direct and stepwise pathway in the AFI topology was studied. Both case studies clearly show that a first-principle molecular dynamics approach enables unprecedented insights into zeolite-catalyzed reactions at the nanometer scale to be obtained.

10.
Chem Soc Rev ; 43(21): 7326-57, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25054453

RESUMO

To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular dynamics methods complemented with additional techniques to simulate rare events are now gradually making their entrance within zeolite catalysis. Recent applications have already given a flavor of the benefit of such techniques to simulate chemical reactions in complex molecular environments.

11.
Chemistry ; 19(49): 16595-606, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24281808

RESUMO

The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.

12.
Chemphyschem ; 14(8): 1526-45, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23595911

RESUMO

The conversion of methanol to olefins (MTO) over a heterogeneous nanoporous catalyst material is a highly complex process involving a cascade of elementary reactions. The elucidation of the reaction mechanisms leading to either the desired production of ethene and/or propene or undesired deactivation has challenged researchers for many decades. Clearly, catalyst choice, in particular topology and acidity, as well as the specific process conditions determine the overall MTO activity and selectivity; however, the subtle balances between these factors remain not fully understood. In this review, an overview of proposed reaction mechanisms for the MTO process is given, focusing on the archetypal MTO catalysts, H-ZSM-5 and H-SAPO-34. The presence of organic species, that is, the so-called hydrocarbon pool, in the inorganic framework forms the starting point for the majority of the mechanistic routes. The combination of theory and experiment enables a detailed description of reaction mechanisms and corresponding reaction intermediates. The identification of such intermediates occurs by different spectroscopic techniques, for which theory and experiment also complement each other. Depending on the catalyst topology, reaction mechanisms proposed thus far involve aromatic or aliphatic intermediates. Ab initio simulations taking into account the zeolitic environment can nowadays be used to obtain reliable reaction barriers and chemical kinetics of individual reactions. As a result, computational chemistry and by extension computational spectroscopy have matured to the level at which reliable theoretical data can be obtained, supplying information that is very hard to acquire experimentally. Special emphasis is given to theoretical developments that open new perspectives and possibilities that aid to unravel a process as complex as methanol conversion over an acidic porous material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...