Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6692): eadj9989, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603486

RESUMO

Epoxy resin thermosets (ERTs) are an important class of polymeric materials. However, owing to their highly cross-linked nature, they suffer from poor recyclability, which contributes to an unacceptable level of environmental pollution. There is a clear need for the design of inherently recyclable ERTs that are based on renewable resources. We present the synthesis and closed-loop recycling of a fully lignocellulose-derivable epoxy resin (DGF/MBCA), prepared from dimethyl ester of 2,5-furandicarboxylic acid (DMFD), 4,4'-methylenebis(cyclohexylamine) (MBCA), and glycidol, which displays excellent thermomechanical properties (a glass transition temperature of 170°C, and a storage modulus at 25°C of 1.2 gigapascals). Notably, the material undergoes methanolysis in the absence of any catalyst, regenerating 90% of the original DMFD. The diamine MBCA and glycidol can subsequently be reformed by acetolysis. Application and recycling of DGF/MBCA in glass and plant fiber composites are demonstrated.

2.
Chem Commun (Camb) ; 59(66): 9929-9951, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526604

RESUMO

Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.

3.
ACS Sustain Chem Eng ; 11(7): 2819-2829, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36844751

RESUMO

Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.

4.
Polym Chem ; 14(8): 907-912, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36846093

RESUMO

In this work, we have described a family of bio-based polycarbonates (PC-MBC) based on the unique lignin-derived aliphatic diol 4,4'-methylenebiscyclohexanol (MBC) that was sustainably sourced from lignin oxidation mixture. The detailed structure analysis of these polycarbonates has been confirmed by a series of 2D NMR (HSQC and COSY) characterizations. Depending on the stereoisomerism of MBC, the PC-MBC displayed a wide achievable T g range of 117-174 °C and high T d5% of >310 °C by variation of the ratio of the stereoisomers of MBC, offering great substitution perspectives towards a bisphenol-containing polycarbonates. Nonetheless, the most here presented PC-MBC polycarbonates were film-forming and transparent.

5.
Green Chem ; 25(1): 211-220, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36685710

RESUMO

The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks. The proposed two-step catalytic sequence involves the use of the commercially available RANEY® Ni catalyst. Therefore, the first step involves the efficient defunctionalization of lignin-derived 2,6-dimethoxybenzoquinone (DMBQ) into 1,4-cyclohexanediol (14CHDO) in 86.5% molar yield, representing a 10.7 wt% yield calculated on a DO weight basis. The second step concerns the highly selective amination of 1,4-cyclohexanediol with ammonia to give 1,4-cyclohexanediamine (14CHDA) in near quantitative yield. The ability to use RANEY® Ni and ammonia in this process holds great potential for future industrial synthesis of 1,4-cyclohexanediamine from renewable resources.

6.
Catal Sci Technol ; 12(19): 5908-5916, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324826

RESUMO

Primary amines are crucially important building blocks for the synthesis of a wide range of industrially relevant products. Our comprehensive catalytic strategy presented here allows diverse primary amines from lignocellulosic biomass to be sourced in a straightforward manner and with minimal purification effort. The core of the methodology is the efficient RANEY® Ni-catalyzed hydrogen-borrowing amination (with ammonia) of the alcohol intermediates, namely alkyl-phenol derivatives as well as aliphatic alcohols, obtained through the two-stage LignoFlex process. Hereby the first stage entails the copper-doped porous metal oxide (Cu20PMO) catalyzed reductive catalytic fractionation (RCF) of pine lignocellulose into a crude bio-oil, rich in dihydroconiferyl alcohol (1G), which could be converted into dihydroconiferyl amine (1G amine) in high selectivity using ammonia gas, by applying our selective amination protocol. Notably also, the crude RCF-oil directly afforded 1G amine in a high 4.6 wt% isolated yield (based on lignin content). Finally it was also shown that the here developed Ni-catalysed heterogeneous catalytic procedure was equally capable of transforming a range of aliphatic linear/cyclic primary/secondary alcohols - available from the second stage of the LignoFlex procedure - into their respective primary amines.

7.
ChemSusChem ; 15(18): e202200914, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35871610

RESUMO

Cyclic primary amines are elementary building blocks to many fine chemicals, pharmaceuticals, and polymers. Here, a powerful one-pot Raney Ni-based catalytic strategy was developed to transform guaiacol into cyclohexylamine using NH3 (7 bar) and H2 (10 bar) in up to 94 % yield. The methodology was extendable to the conversion of a wider range of guaiacols and syringols into their corresponding cyclohexylamines. Notably, a crude bio-oil originating from the reductive catalytic fractionation of birch lignocellulose was transformed into a product mixture rich in 4-propylcyclohexylamine, constituting an interesting case of catalytic funneling. The isolated yield of the desired 4-propylcyclohexylamine reached as high as 7 wt % (on lignin basis). Preliminary mechanistic studies pointed at the consecutive occurrence of three key catalytic transformations, namely, demethoxylation, hydrogenation, and amination.


Assuntos
Cicloexilaminas , Lignina , Guaiacol , Preparações Farmacêuticas , Pirogalol/análogos & derivados
8.
Chem Ing Tech ; 94(11): 1808-1817, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36632530

RESUMO

Diamines are important industrial chemicals. In this paper we outline the feasibility of lignocellulose as a source of diol-containing molecules. We also illustrate the possibility of turning these diols into their diamines in good to excellent yields. Central to these transformations is the use of commercially available Raney Ni. For diol formation, the Raney Ni engages in hydrogenation and often also demethoxylation, that way funneling multiple components to one single molecule. For diamine formation, Raney Ni catalyzes hydrogen-borrowing mediated diamination in the presence of NH3.

9.
ChemSusChem ; 12(12): 2660-2670, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30950578

RESUMO

A new strategy for the synthesis of mesoporous TiO2 @C nanocomposites through the direct mineralization of seaweed-derived alginic acid cryogel by TiCl4 through a solid/vapor reaction pathway is presented. In this synthesis, alginic acid cryogel can have multiple roles; i) mesoporous template, ii) carbon source, and iii) oxygen source for the TiO2 precursor, TiCl4 . The resulting TiO2 @alginic acid composite was transformed either into pure mesoporous TiO2 by calcination or into mesoporous TiO2 @C nanocomposites by pyrolysis. By comparing with a nonporous TiO2 @C composite, the importance of the mesopores on the performance of electrodes for lithium-ion batteries based on mesoporous TiO2 @C composite was clearly evidenced. In addition, the carbon matrix in the mesoporous TiO2 @C nanocomposite also showed electrochemical activity versus lithium ions, providing twice the capacity of pure mesoporous TiO2 or alginic acid-derived mesoporous carbon (A600). Given the simplicity and environmental friendliness of the process, the mesoporous TiO2 @C nanocomposite could satisfy the main prerequisites of green and sustainable chemistry while showing improved electrochemical performance as a negative electrode for lithium-ion batteries.

10.
ACS Sustain Chem Eng ; 7(15): 13430-13436, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32953280

RESUMO

We report on the synthesis and characterization of novel mesoporous chiral polyboronates obtained by condensation of (R,S)/(S,S)-hexane-1,2,5,6-tetrol (HT) with simple aromatic diboronic acids (e.g., 1,3-benzenediboronic acid) (BDB). HT is a cellulose-derived building block comprising two 1,2-diol structures linked by a flexible ethane bridge. It typically consists of two diastereomers one of which [(S,R)-HT] can be made chirally pure. Boronic acids are abundantly available due to their importance in Suzuki-Miyaura coupling reactions. They are generally considered nontoxic and easy to synthesize. Reactive dissolution of generally sparingly soluble HT with BDB, in only a small amount of solvent, yields the mesoporous HT/polyboronate materials by spontaneous precipitation from the reaction mixture. The 3D nature of HT/polyboronate materials results from the entanglement of individual 1D polymeric chains. The obtained BET surface areas (SAs) and pore volumes (PVs) depend strongly on HT's diastereomeric excess and the meta/para orientation of the boronic acids on the phenyl ring. This suggests a strong influence of the curvature(s) of the 1D polymeric chains on the final materials' properties. Maximum SA and PV values are respectively 90 m2 g-1 and 0.44 mL g-1. Variably sized mesopores, spanning mainly the 5-50 nm range, are evidenced. The obtained pore volumes rival the ones of some covalent organic frameworks (COFs), yet they are obtained in a less expensive and more benign fashion. Moreover, currently no COFs have been reported with pore diameters in excess of 5 nm. In addition, chiral boron-based COFs have presently not been reported. Scanning electron microscopy reveals the presence of micrometer-sized particles, consisting of aggregates of plates, forming channels and cell-like structures. X-ray diffraction shows the crystalline nature of the material, which depends on the nature of the aromatic diboronic acids and, in the specific case of 1,4-benzenediboronic acid, also on the applied diastereomeric excess in HT.

11.
ACS Sustain Chem Eng ; 7(8): 7878-7883, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32953281

RESUMO

The addition of water to dihydrolevoglucosenone (Cyrene) creates a solvent mixture with highly unusual properties and the ability to specifically and efficiently solubilize a wide range of organic compounds, notably, aspirin, ibuprofen, salicylic acid, ferulic acid, caffeine, and mandelic acid. The observed solubility enhancement (up to 100-fold) can be explained only by the existence of microenvironments mainly centered on Cyrene's geminal diol. Surprisingly, the latter acts as a reversible hydrotrope and regulates the polarity of the created complex mixture. The possibility to tune the polarity of the solvent mixture through the addition of water, and the subsequent generation of variable amounts of Cyrene's geminal diol, creates a continuum of green solvents with controllable solubilization properties. The effective presence of microheterogenieties in the Cyrene/water mixture was adequately proven by (1) Fourier transform infrared/density functional theory showing Cyrene dimerization, (2) electrospray mass-spectrometry demonstrating the existence of dimers of Cyrene's geminal diol, and (3) the variable presence of single or multiple tetramethylsilane peaks in the 1H NMR spectra of a range of Cyrene/water mixtures. The Cyrene-water solvent mixture is importantly not mutagenic, barely ecotoxic, bioderived, and endowed with tunable hydrophilic/hydrophobic properties.

12.
Faraday Discuss ; 202: 451-464, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660921

RESUMO

The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.


Assuntos
Polissacarídeos/isolamento & purificação , Adsorção , Tamanho da Partícula , Polissacarídeos/química , Porosidade , Extração em Fase Sólida , Propriedades de Superfície
13.
J Am Chem Soc ; 139(15): 5431-5436, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28345911

RESUMO

A systematic study of the conventional and microwave (MW) kinetics of an industrially relevant demethylation reaction is presented. In using industrially relevant reaction conditions the dominant influence of the solvent on the MW energy dissipation is avoided. Below the boiling point, the effect of MWs on the activation energy Ea and k0 is found nonexistent. Interestingly, under reflux conditions, the microwave-heated (MWH) reaction displays very pronounced zero-order kinetics, displaying a much higher reaction rate than observed for the conventionally thermal-heated (CTH) reaction. This is related to a different gas product (methyl bromide, MeBr) removal mechanism, changing from classic nucleation into gaseous bubbles to a facilitated removal through escaping gases/vapors. Additionally, the use of MWs compensates better for the strong heat losses in this reaction, associated with the boiling of HBr/water and the loss of MeBr, than under CTH. Through modeling, MWH was shown to occur inhomogeneously around gas/liquid interfaces, resulting in localized overheating in the very near vicinity of the bubbles, overall increasing the average heating rate in the bubble vicinity vis-à-vis the bulk of the liquid. Based on these observations and findings, a novel continuous reactor concept is proposed in which the escaping MeBr and the generated HBr/water vapors are the main driving forces for circulation. This reactor concept is generic in that it offers a viable and low cost option for the use of very strong acids and the managed removal/quenching of gaseous byproducts.

14.
ChemSusChem ; 9(24): 3503-3512, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27860452

RESUMO

With the increasing restriction and control of hazardous solvents, safer alternatives need to be identified. Here a contemporary approach to solvent selection and substitution is presented that offers a more scientific alternative to the simple "like-for-like" exchange. A new family of levoglucosenonederived compounds is proposed, modeled to determine their solvent properties, synthesized, and tested. These new molecules show promise as replacements for polar aprotic solvents that have chronic toxicity issues, such as dichloromethane, nitrobenzene, and N-methylpyrrolidinone. The success of this approach makes it possible for academia and industry to make calculated, intelligent choices for solvent substitution in the future.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Glucose/análogos & derivados , Solventes/química , Análise Custo-Benefício , Glucose/química , Química Verde/economia
15.
ChemSusChem ; 9(3): 280-8, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26785060

RESUMO

The processes involved in the transformation of non-porous, native polysaccharides to their highly porous equivalents introduce significant molecular complexity and are not yet fully understood. In this paper, we propose that distinct changes in polysaccharide local short-range ordering promotes and directs the formation of meso- and micro-pores, which are investigated here using N2 sorption, FTIR, and solid-state (13)C NMR. It is found that an increase in the overall double helical amylose content, and their local association structures, are responsible for formation of the porous polysaccharide gel phase. An exciting consequence of this local ordering change is elegantly revealed using a (19)F NMR experiment, which identifies the stereochemistry-dependent diffusion of a fluorinated chiral probe molecule (1-phenyl-2,2,2-trifluoroethanol) from the meso- to the micro-pore region. This finding opens opportunities in the area of polysaccharide-based chiral stationary phases and asymmetric catalyst preparation.


Assuntos
Polissacarídeos/química , Difusão , Géis , Porosidade , Estereoisomerismo , Trifluoretanol/análogos & derivados , Trifluoretanol/química
16.
Macromol Rapid Commun ; 36(8): 774-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25721151

RESUMO

Bio-derived polysaccharide aerogels are of interest for a broad range of applications. To date, these aerogels have been obtained through the time- and solvent-intensive procedure of hydrogel fomation, solvent exchange, and scCO2 drying, which offers little control over meso/macropore distribution. A simpler and more versatile route is developed, using freeze drying to produce highly mesoporous polysaccharide aerogels with various degrees of macroporosity. The hierarchical pore distribution is controlled by addition of different quantities of t-butanol (TBA) to hydrogels before drying. Through a systematic study an interesting relationship between the mesoporosity and t-butanol/water phase diagram is found, linking mesoporosity maxima with eutectic points for all polysaccharides studied (pectin, starch, and alginic acid). Moreover, direct gelation of polysaccharides in aqueous TBA offers additional time savings and the potential for solvent reuse. This finding is a doorway to more accessible polysaccharide aerogels for research and industrial scale production, due to the widespread accessibility of the freeze drying technology and the simplicity of the method.


Assuntos
Hidrogéis/síntese química , Polissacarídeos/química , terc-Butil Álcool/química , Dessecação , Liofilização , Hidrogéis/química , Teste de Materiais , Polissacarídeos/síntese química , Porosidade , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração , Água/química
17.
Bioresour Technol ; 172: 121-130, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25255188

RESUMO

Polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production was developed in bioreactor cultures using the strain Cupriavidus necator DSM 7237 cultivated on crude glycerol, sunflower meal (SFM) hydrolysates and levulinic acid as the sole fermentation feedstocks. Bacterial growth and PHB production was influenced significantly by the free amino nitrogen and inorganic phosphorus content of the SFM hydrolysate. Fed-batch bioreactor fermentations led to the production of 27gL(-1) PHB with an intracellular content of 72.9% (w/w). Continuous feeding of levulinic acid led to the production of up to 23.4gL(-1) P(3HB-co-3HV) with an intracellular content of 66.4% (w/w) and a 3HV content of 22.5mol%. A maximum 3HV content of 31mol% was achieved at earlier fermentation time (53h). Thus, levulinic acid could be combined with biodiesel industry by-products for the production of high P(3HB-co-3HV) concentration, intracellular content and industrially useful 3HV content.


Assuntos
Biotecnologia/métodos , Glicerol/metabolismo , Helianthus/metabolismo , Hidroxibutiratos/metabolismo , Ácidos Levulínicos/metabolismo , Poliésteres/metabolismo , Biomassa , Biopolímeros/biossíntese , Cupriavidus necator/efeitos dos fármacos , Cupriavidus necator/metabolismo , Fermentação/efeitos dos fármacos , Nitrogênio/farmacologia , Proibitinas
18.
Chem Commun (Camb) ; 50(68): 9650-2, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25007289

RESUMO

Dihydrolevoglucosenone (Cyrene) is a bio-based molecule, derived in two simple steps from cellulose, which demonstrates significant promise as a dipolar aprotic solvent. The dipolarity of dihydrolevoglucosenone is similar to NMP, DMF and sulpholane. Dihydrolevoglucosenone demonstrates similar performance to NMP in a fluorination reaction and the Menschutkin reaction.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Celulose/análogos & derivados , Halogenação , Modelos Moleculares , Solventes/química
19.
J Am Chem Soc ; 135(32): 11728-31, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23895516

RESUMO

A systematic investigation of the interaction of microwave irradiation with microcrystalline cellulose has been carried out, covering a broad temperature range (150 → 270 °C). A variety of analytical techniques (e.g., HPLC, (13)C NMR, FTIR, CHN analysis, hydrogen-deuterium exchange) allowed for the analysis of the obtained liquid and solid products. Based on these results a mechanism of cellulose interaction with microwaves is proposed. Thereby the degree of freedom of the cellulose enclosed CH2OH groups was found to be crucial. This mechanism allows for the explanation of the different experimental observations such as high efficiency of microwave treatment; the dependence of the selectivity/yield of glucose on the applied microwave density; the observed high glucose to HMF ratio; and the influence of the degree of cellulose crystallinity on the results of the hydrolysis process. The highest selectivity toward glucose was found to be ~75% while the highest glucose yield obtained was 21%.


Assuntos
Celulose/química , Glucose/química , Micro-Ondas , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...