Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life Sci ; 336: 122305, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030061

RESUMO

AIM: Obesity is a worldwide health issue, associated with development of type 2 Diabetes Mellitus. The aim of this study is to analyze the effect of consumption of two hypercaloric diets on metabolic disturbance and beta cells damage. MAIN METHODS: Male Wistar rats were subjected to twelve months consumption of three diets: a Control balanced diet (CTD, carbohydrates 58 %, proteins 29 %, lipids 13 %) and two hypercaloric diets, high in sucrose (HSD, carbohydrates 68 %, proteins 22 %, lipids 10 %) or high in fat (HFD, carbohydrates 31 %, proteins 14 %, lipids 55 %). Serum levels of glucose, triglycerides and free fatty acids were measured after zoometric parameters determination. Antioxidant enzymes activity and oxidative stress-marker were measured in pancreas tissue among histological analysis of Langerhans islets. KEY FINDINGS: Although diets were hypercaloric, the amount of food consumed by rats decreased, resulting in an equal caloric consumption. The HSD induced hypertriglyceridemia and hyperglycemia with higher levels in free fatty acids (FFA, lipotoxicity); whereas HFD did not increased neither the triglycerides nor FFA, nevertheless the loss of islets' cell was larger. Both diets induced obesity with hyperglycemia and significant reduction in Langerhans islets size. SIGNIFICANCE: Our results demonstrate that consumption of HSD induces more significant metabolic disturbances that HFD, although both generated pancreas damage; as well hypercaloric diet consumption is not indispensable to becoming obese; the chronic consumption of unbalanced diets (rich in carbohydrates or lipids) may lead to abdominal obesity with metabolic and functional disturbances, although the total amount of calories are similar.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Masculino , Ratos , Animais , Diabetes Mellitus Tipo 2/etiologia , Obesidade Abdominal/etiologia , Sacarose , Ácidos Graxos não Esterificados , Células de Langerhans/metabolismo , Ratos Wistar , Glicemia/metabolismo , Obesidade/metabolismo , Dieta , Triglicerídeos/metabolismo , Dieta Hiperlipídica/efeitos adversos
3.
J Bioenerg Biomembr ; 54(3): 145-152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347511

RESUMO

Pollution is considered a risk factor for cardiovascular disease; however, the mechanisms to explain this relationship are not well understood; ozone is one of the most abundant and studied air contaminants. Our study aimed to evaluate the effect of chronic exposition of rats to controlled low doses of ozone on oxidative stress, apoptosis, mitochondrial dynamics, and cardiac hypertrophy. Male Wistar rats were daily exposed to low ozone doses during 7, 15, 30, and 60 days, 4 h/day. Hearts were dissected, and homogenates were prepared. Oxidative stress was evaluated by TBARS and protein nitrosylation in addition to Superoxide dismutase 1 (SOD1) and Catalase levels; the apoptosis related-proteins caspase 3, caspase 9, Bax, Bcl-2, and the mitochondrial dynamic-associated proteins Fis1, Drp1, OPA1, and Mfn1 were quantified by western blot among the cardiac hypertrophy indicator alpha-actin (cardiac actin). There were no changes in the oxidative stress markers, however SOD1 expression increases. Caspase 3 expression decreased, whereas caspase 9 increased without changes in Bax or Bcl-2. Mitochondrial fission may be favored according to the increased expression of Drp1 but not changes in fusion-related proteins OPA1 and Mfn1. Finally, the molecular marker for cardiac hypertrophy was overexpressed after 30 and 60 days of ozone exposition. The chronic exposition to ozone induces a deleterious effect on cardiac mitochondria. Antioxidant defenses also show changes in relation to exposure time, as well as an apparent pro-hypertrophic effect associated with altered mitochondrial dynamics.


Assuntos
Dinaminas , Mitocôndrias Cardíacas , Proteínas Mitocondriais , Ozônio , Animais , Antioxidantes/metabolismo , Apoptose , Cardiomegalia , Caspase 3/metabolismo , Caspase 9/metabolismo , Dinaminas/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Ozônio/efeitos adversos , Ratos , Ratos Wistar , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...