Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Bioengineering (Basel) ; 11(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391665

RESUMO

Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.

2.
Gene Ther ; 31(5-6): 255-262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273095

RESUMO

Retinitis pigmentosa (RP) is a heterogeneous disease and the main cause of vision loss within the group of inherited retinal diseases (IRDs). IRDs are a group of rare disorders caused by mutations in one or more of over 280 genes which ultimately result in blindness. Modifier genes play a key role in modulating disease phenotypes, and mutations in them can affect disease outcomes, rate of progression, and severity. Our previous studies have demonstrated that the nuclear hormone receptor 2 family e, member 3 (Nr2e3) gene reduced disease progression and loss of photoreceptor cell layers in RhoP23H-/- mice. This follow up, pharmacology study evaluates a longitudinal NR2E3 dose response in the clinically relevant heterozygous RhoP23H mouse. Reduced retinal degeneration and improved retinal morphology was observed 6 months following treatment evaluating three different NR2E3 doses. Histological and immunohistochemical analysis revealed regions of photoreceptor rescue in the treated retinas of RhoP23H+/- mice. Functional assessment by electroretinogram (ERG) showed attenuated photoreceptor degeneration with all doses. This study demonstrates the effectiveness of different doses of NR2E3 at reducing retinal degeneration and informs dose selection for clinical trials of RhoP23H-associated RP.


Assuntos
Modelos Animais de Doenças , Receptores Nucleares Órfãos , Degeneração Retiniana , Retinose Pigmentar , Animais , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Camundongos , Receptores Nucleares Órfãos/genética , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/etiologia , Eletrorretinografia , Retina/metabolismo , Retina/patologia , Terapia Genética/métodos
3.
Bioengineering (Basel) ; 11(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247923

RESUMO

Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid ß (Aß) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aß pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aß degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.

4.
Commun Biol ; 7(1): 107, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233474

RESUMO

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.


Assuntos
Estudo de Associação Genômica Ampla , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Etnicidade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
5.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067097

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.


Assuntos
D-Ala-D-Ala Carboxipeptidase Tipo Serina , Degeneração Macular Exsudativa , Humanos , Alelos , Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Expressão Gênica , Proteínas do Citoesqueleto , Proteínas de Ligação a Fosfato , Proteínas de Transporte , Proteínas do Tecido Nervoso , Proteínas de Ligação ao GTP
6.
Genome Biol ; 24(1): 269, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012720

RESUMO

BACKGROUND: Systematic characterization of how  genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. RESULTS: We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. CONCLUSIONS: Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.


Assuntos
Multiômica , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Locos de Características Quantitativas , Regulação da Expressão Gênica , Cromatina , Estudo de Associação Genômica Ampla
7.
Res Sq ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014002

RESUMO

Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.

8.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873318

RESUMO

Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using the better-matched, i.e., benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using a benchmark dataset of healthy retinas suggest much-improved deconvolution accuracy. Further analysis of a cohort of 453 patients with age-related macular degeneration supports the broad applicability of DeMixSC. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched dataset to resolve this challenge. The developed DeMixSC framework is generally applicable for deconvolving large cohorts of disease tissues, and potentially cancer.

9.
Cell Genom ; 3(6): 100302, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388919

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.

10.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982708

RESUMO

Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41-71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients' glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System's pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer's disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62-5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10-6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11-0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47-58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.


Assuntos
Glaucoma , Adesão à Medicação , Humanos , Glaucoma/tratamento farmacológico , Glaucoma/genética , Pressão Intraocular/genética , Progressão da Doença , Tamanho da Amostra , Estudos Retrospectivos , Glutationa Transferase
11.
Am J Pathol ; 193(11): 1776-1788, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36822266

RESUMO

Retinopathy of prematurity (ROP), a blinding condition affecting preterm infants, is an interruption of retinal vascular maturation that is incomplete when born preterm. Although ROP demonstrates delayed onset following preterm birth, representing a window for therapeutic intervention, there are no curative or preventative measures available for this condition. The in utero environment, including placental function, is increasingly recognized for contributions to preterm infant disease risk. The current study identified a protective association between acute placental inflammation and preterm infant ROP development using logistic regression, with the most significant association found for infants without gestational exposure to maternal preeclampsia and those with earlier preterm birth. Expression analysis of proteins with described ROP risk associations demonstrated significantly decreased placental high temperature requirement A serine peptidase-1 (HTRA-1) and fatty acid binding protein 4 protein expression in infants with acute placental inflammation compared with those without. Within the postnatal peripheral circulation, HTRA-1 and vascular endothelial growth factor-A demonstrated inverse longitudinal trends for infants born in the presence of, compared with absence of, acute placental inflammation. An agnostic approach, including whole transcriptome and differential methylation placental analysis, further identify novel mediators and pathways that may underly protection. Taken together, these data build on emerging literature showing a protective association between acute placental inflammation and ROP development and identify novel mechanisms that may inform postnatal risk associations in preterm infants.


Assuntos
Nascimento Prematuro , Retinopatia da Prematuridade , Lactente , Recém-Nascido , Humanos , Feminino , Gravidez , Recém-Nascido Prematuro , Fator A de Crescimento do Endotélio Vascular , Placenta , Idade Gestacional , Inflamação , Fatores de Risco
12.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997788

RESUMO

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
J Clin Med ; 11(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329812

RESUMO

Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that is the world's leading cause of blindness in the aging population. Although the clinical stages and forms of AMD have been elucidated, more specific prognostic tools are required to determine when patients with early and intermediate AMD will progress into the advanced stages of AMD. Another challenge in the field has been the appropriate development of therapies for intermediate AMD and advanced atrophic AMD. After numerous negative clinical trials, an anti-C5 agent and anti-C3 agent have recently shown promising results in phase 3 clinical trials, in terms of slowing the growth of geographic atrophy, an advanced form of AMD. Interestingly, both drugs appear to be associated with an increased incidence of wet AMD, another advanced form of the disease, and will require frequent intravitreal injections. Certainly, there remains a need for other therapeutic agents with the potential to prevent progression to advanced stages of the disease. Investigation of the role and clinical utility of non-coding RNAs (ncRNAs) is a major advancement in biology that has only been minimally applied to AMD. In the following review, we discuss the clinical relevance of ncRNAs in AMD as both biomarkers and therapeutic targets.

14.
Neural Regen Res ; 17(9): 1875-1880, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142661

RESUMO

Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.

15.
J Clin Med ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614910

RESUMO

Age-related macular degeneration (AMD) has been implicated as a risk factor for severe consequences from COVID-19. We evaluated the genetic architecture shared between AMD and COVID-19 (critical illness, hospitalization, and infections) using analyses of genetic correlations and pleiotropy (i.e., cross-phenotype meta-analysis) of AMD (n = 33,976) and COVID-19 (n ≥ 1,388,342) and subsequent analyses including expression quantitative trait locus (eQTL), differential gene expression, and Mendelian randomization (MR). We observed a significant genetic correlation between AMD and COVID-19 infection (rG = 0.10, p = 0.02) and identified novel genome-wide significant associations near PDGFB (best SNP: rs130651; p = 2.4 × 10-8) in the pleiotropy analysis of the two diseases. The disease-risk allele of rs130651 was significantly associated with increased gene expression levels of PDGFB in multiple tissues (best eQTL p = 1.8 × 10-11 in whole blood) and immune cells (best eQTL p = 7.1 × 10-20 in T-cells). PDGFB expression was observed to be higher in AMD cases than AMD controls {fold change (FC) = 1.02; p = 0.067}, as well as in the peak COVID-19 symptom stage (11-20 days after the symptom onset) compared to early/progressive stage (0-10 days) among COVID-19 patients over age 40 (FC = 2.17; p = 0.03) and age 50 (FC = 2.15; p = 0.04). Our MR analysis found that the liability of AMD risk derived from complement system dysfunction {OR (95% CI); hospitalization = 1.02 (1.01-1.03), infection = 1.02 (1.01-1.03) and increased levels of serum cytokine PDGF-BB {ß (95% CI); critical illness = 0.07 (0.02-0.11)} are significantly associated with COVID-19 outcomes. Our study demonstrated that the liability of AMD is associated with an increased risk of COVID-19, and PDGFB may be responsible for the severe COVID-19 outcomes among AMD patients.

16.
J Clin Med ; 10(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830566

RESUMO

The use of artificial intelligence (AI) and machine learning (ML) in clinical care offers great promise to improve patient health outcomes and reduce health inequity across patient populations. However, inherent biases in these applications, and the subsequent potential risk of harm can limit current use. Multi-modal workflows designed to minimize these limitations in the development, implementation, and evaluation of ML systems in real-world settings are needed to improve efficacy while reducing bias and the risk of potential harms. Comprehensive consideration of rapidly evolving AI technologies and the inherent risks of bias, the expanding volume and nature of data sources, and the evolving regulatory landscapes, can contribute meaningfully to the development of AI-enhanced clinical decision making and the reduction in health inequity.

17.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502266

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-ß-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR-/-) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient's serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.


Assuntos
Homocisteína/efeitos adversos , Homocisteína/sangue , Degeneração Macular/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Neovascularização de Coroide/etiologia , Cistationina beta-Sintase/sangue , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Hiper-Homocisteinemia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Degeneração Macular/induzido quimicamente , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica/etiologia , Cultura Primária de Células , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
SAGE Open Med ; 9: 20503121211035263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377470

RESUMO

During the COVID-19 outbreak, sheltering at home has led to an increase in physical intimate partner violence cases. Intimate partner violence-sustained ocular injuries may be higher during the pandemic due to the increase in physical intimate partner violence. Left untreated, intimate partner violence-related ocular or orbital trauma can lead to permanent vision loss. Even with treatment, patients often lose vision from intimate partner violence-related traumatic ocular injuries. Eye care providers and eye care facilities should understand the community services available to intimate partner violence survivors to better care for these patients. Due to the potential lasting economic burden and social strain of this pandemic, eye care providers and facilities should stay vigilant as there may still be a sustained increase in intimate partner violence even after the global COVID-19 pandemic.

19.
J Pers Med ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34442441

RESUMO

iStent implantation is thought to augment the trabecular outflow channel in the anterior segment of the eye. We hypothesized that iStent with subsequent selective laser trabeculoplasty (SLT) would better control the intraocular pressure (IOP) compared to standalone SLT in patients with primary open-angle glaucoma (POAG). We, therefore, determined if the presence of an iStent combined with SLT was statistically associated with IOP lowering compared to standalone SLT. Through retrospective electronic medical record review, records of 824 eyes from 440 patients who received primary SLT without a history of iStent were considered. Additionally, 42 eyes from 28 patients who received SLT after combined phacoemulsification and iStent implantation that failed to control intraocular pressure (IOP) and/or the progression of the disease were retrospectively reviewed. IOP and number of medications, which were tracked in each patient for up to 12 months post laser, were also examined. Successful outcome was defined as a statistically significant reduction in IOP or number of medications at 6 months. As defined in univariate analysis (p ≤ 0.01), multivariate analysis included iStent, age, sex, race, and initial IOP as variables. IOP reduction was statistically associated with patients pre-SLT IOP (p < 0.001) but not with patients with iStent (p = 0.222). Medication reduction was statistically associated with the pre-SLT number of medications (p < 0.001) and iStent (p < 0.001). In eyes that received SLT, iStent was not statistically associated with a greater reduction in IOP compared to controls, but was associated with a higher reduction in the overall number of medications used 6 months after receiving SLT. The work presented should guide clinicians to consider SLT as an effective therapy after iStent implantation, in terms of glaucoma medication reduction in iStent patients, but clinicians should know that the presence of an iStent does not necessarily make subsequent SLT more effective at lowering IOP.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34299682

RESUMO

The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients' native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina's HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10-5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10-8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10-8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.


Assuntos
Catarata , Síndrome de Exfoliação , Catarata/etnologia , Catarata/genética , Estudos Transversais , Síndrome de Exfoliação/etnologia , Síndrome de Exfoliação/genética , Estudo de Associação Genômica Ampla , Guatemala/epidemiologia , Humanos , Indígenas Centro-Americanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...