Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Plants ; 9(1): 45-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564631

RESUMO

Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on average, while using farmed seaweed for products that avoid a gigaton of CO2-equivalent GHG emissions annually could return a profit of $50 per tCO2-eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas (>90,000 km2)-a >30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.


Assuntos
Mudança Climática , Alga Marinha , Dióxido de Carbono , Agricultura/métodos , Carbono
3.
Nat Commun ; 12(1): 6096, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671014

RESUMO

Achieving net-zero CO2 emissions has become the explicitgoal of many climate-energy policies around the world. Although many studies have assessed net-zero emissions pathways, the common features and tradeoffs of energy systems across global scenarios at the point of net-zero CO2 emissions have not yet been evaluated. Here, we examine the energy systems of 177 net-zero scenarios and discuss their long-term technological and regional characteristics in the context of current energy policies. We find that, on average, renewable energy sources account for 60% of primary energy at net-zero (compared to ∼14% today), with slightly less than half of that renewable energy derived from biomass. Meanwhile, electricity makes up approximately half of final energy consumed (compared to ∼20% today), highlighting the extent to which solid, liquid, and gaseous fuels remain prevalent in the scenarios even when emissions reach net-zero. Finally, residual emissions and offsetting negative emissions are not evenly distributed across world regions, which may have important implications for negotiations on burden-sharing, human development, and equity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...