Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288995

RESUMO

Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaptation, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitate adaptation, we completed chromosome-level de novo assemblies of all chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380, using Nanopore MinION long-read sequencing. We characterized the S. bayanus genome and compared it with its parent species, S. uvarum and S. eubayanus, and other S. bayanus genomes to better understand genome evolution after a relatively recent hybridization event. We observed multiple recombination events between the subgenomes in each chromosome, followed by loss of heterozygosity (LOH) in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of S. cerevisiae, such as those involved in the maltose metabolism. Finally, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaptation to maltose brewing environments and mitigated the maladaptive effect of hybridization. This manuscript describes the first in-depth study using long-read sequencing technology of an S. bayanus hybrid genome which may serve as an excellent reference for future studies of this important yeast and other yeast strains.

2.
Cancer Immunol Res ; 12(8): 956-963, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695618

RESUMO

Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared with male patients. Furthermore, increased CXCL13 expression was associated with response to PD1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD1 therapy in lung cancer that may need to be considered during patient treatment decisions. See related Spotlight by Cruz-Hinojoza and Stromnes, p. 952.


Assuntos
Quimiocina CXCL13 , Imunoterapia , Neoplasias Pulmonares , Linfócitos T , Humanos , Quimiocina CXCL13/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Feminino , Masculino , Imunoterapia/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores Sexuais , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo
3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562692

RESUMO

Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaption, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitated adaptation, we completed chromosome-level de novo assemblies of all 16 pairs chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380 (IFO11022), using Nanopore MinION long-read sequencing. Characterization of S. bayanus subgenomes and comparative analysis with the genomes of its parent species, S. uvarum and S. eubayanus, provide several new insights into understanding genome evolution after a relatively recent hybridization. For instance, multiple recombination events between the two subgenomes have been observed in each chromosome, followed by loss of heterozygosity (LOH) in most chromosomes in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of S. cerevisiae, such as those involved in the maltose metabolism. In addition, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus. The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaption to maltose brewing environments and mitigated the maladaptive effect of hybridization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA