Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(5): eaaw4466, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31149638

RESUMO

The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO2) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO2 and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO2 changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia.


Assuntos
Encéfalo/irrigação sanguínea , Membrana Eritrocítica/fisiologia , Hiperemia/sangue , Oxigênio/sangue , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Hiperemia/fisiopatologia , Dispositivos Lab-On-A-Chip , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Proc Natl Acad Sci U S A ; 112(38): 11783-8, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351678

RESUMO

Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Cálcio/metabolismo , Calibragem , Membrana Eritrocítica/metabolismo , Espaço Extracelular/metabolismo , Humanos , Microfluídica , Modelos Biológicos , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA