Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 7(3): e10299, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176627

RESUMO

We report anatomically correct 3D-printed mouse phantoms that can be used to plan experiments and evaluate analysis protocols for magnetic particle imaging (MPI) studies. The 3D-printed phantoms were based on the Digimouse 3D whole body mouse atlas and incorporate cavities representative of a liver, brain tumor, and orthotopic breast cancer tumor placed in anatomically correct locations, allowing evaluation of the effect of precise doses of MPI tracer. To illustrate their use, a constant tracer iron mass was present in the liver for the breast (200 µgFe) and brain tumor (10 µgFe) model, respectively, while a series of decreasing tracer iron mass was placed in the tumor region. MPI scans were acquired in 2D and 3D high sensitivity and high sensitivity/high resolution (HSHR) modes using a MOMENTUM imager. A thresholding algorithm was used to define regions of interest (ROIs) in the scans and the tracer mass in the liver and tumors was calculated by comparison of the signal in their respective ROI against that of known mass fiducials that were included in each scan. The results demonstrate that this approach to image analysis provides accurate estimates of tracer mass. Additionally, the results show how the limit of detection in MPI is sensitive to the details of tracer distribution in the subject, as we found that a greater tracer mass in the liver cavity resulted in poorer sensitivity in tumor regions. These experiments illustrate the utility of the reported 3D-printed anatomically correct mouse phantoms in evaluating methods to analyze MPI scans and plan in vivo experiments.

2.
Nanotheranostics ; 5(3): 348-361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850693

RESUMO

Superparamagnetic iron oxide nanoparticle (SPION) tracers possessing long blood circulation time and tailored for magnetic particle imaging (MPI) performance are crucial for the development of this emerging molecular imaging modality. Here, single-core SPION MPI tracers coated with covalently bonded polyethyelene glycol (PEG) brushes were obtained using a semi-batch thermal decomposition synthesis with controlled addition of molecular oxygen, followed by an optimized PEG-silane ligand exchange procedure. The physical and magnetic properties, MPI performance, and blood circulation time of these newly synthesized tracers were compared to those of two commercially available SPIONs that were not tailored for MPI but are used for MPI: ferucarbotran and PEG-coated Synomag®-D. The new tailored tracer has MPI sensitivity that is ~3-times better than the commercial tracer ferucarbotran and much longer circulation half-life than both commercial tracers (t1/2=6.99 h for the new tracer, vs t1/2=0.59 h for ferucarbotran, and t1/2=0.62 h for PEG-coated Synomag®-D).


Assuntos
Meios de Contraste , Nanopartículas de Magnetita , Imagem Molecular/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...