Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(12): 3633-3639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657560

RESUMO

BACKGROUND: Most platelet agonists work through G protein-coupled receptors, activating pathways that involve members of the Gq, Gi, and G12/G13 families of heterotrimeric G proteins. Gq signaling has been shown to be critical for efficient platelet activation. Growing evidence suggests that regulatory mechanisms converge on G protein-coupled receptors and Gq to prevent overly robust platelet reactivity. OBJECTIVES: To identify and characterize mechanisms by which Gq signaling is regulated in platelets. METHODS: Based on our prior experience with a Gαi2 variant that escapes regulation by regulator of G protein signaling (RGS) proteins, a Gαq variant was designed with glycine 188 replaced with serine (G188S) and then incorporated into a mouse line so that its effects on platelet activation and thrombus formation could be studied in vitro and in vivo. RESULTS AND CONCLUSIONS: As predicted, the G188S substitution in Gαq disrupted its interaction with RGS18. Unexpectedly, it also uncoupled PLCß-3 from activation by platelet agonists as evidenced by a loss rather than a gain of platelet function in vitro and in vivo. Binding studies showed that in addition to preventing the binding of RGS18 to Gαq, the G188S substitution also prevented the binding of PLCß-3 to Gαq. Structural analysis revealed that G188 resides in the region that is also important for Gαq binding to PLCß-3 in platelets. We conclude that the Gαq signaling node is more complex than that has been previously understood, suggesting that there is cross-talk between RGS proteins and PLCß-3 in the context of Gαq signaling.


Assuntos
Plaquetas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas RGS , Animais , Camundongos , Plaquetas/metabolismo , Ativação Plaquetária/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
2.
Blood ; 136(15): 1773-1782, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32542378

RESUMO

G protein-coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor-activating peptide, an increased maximum response to adenosine 5'-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10-/- platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18-/- mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18-/- and RGS10-/-18-/- mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária/genética , Proteínas RGS/genética , Trombopoese/genética , Animais , Plaquetas/efeitos dos fármacos , Sobrevivência Celular/genética , Camundongos , Camundongos Knockout , Fosforilação , Fator de Ativação de Plaquetas/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Contagem de Plaquetas , Proteínas RGS/metabolismo , Trombopoese/efeitos dos fármacos
3.
Blood Adv ; 4(1): 76-86, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31899801

RESUMO

G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.


Assuntos
Plaquetas , Hemostáticos , Animais , Camundongos , Ativação Plaquetária , Receptores de Trombina , Transdução de Sinais
4.
Blood Adv ; 2(16): 2145-2155, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30150297

RESUMO

Platelets express ≥2 members of the regulators of G protein signaling (RGS) family. Here, we have focused on the most abundant, RGS10, examining its impact on the hemostatic response in vivo and the mechanisms involved. We have previously shown that the hemostatic thrombi formed in response to penetrating injuries consist of a core of fully activated densely packed platelets overlaid by a shell of less-activated platelets responding to adenosine 5'-diphosphate (ADP) and thromboxane A2 (TxA2). Hemostatic thrombi formed in RGS10-/- mice were larger than in controls, with the increase due to expansion of the shell but not the core. Clot retraction was slower, and average packing density was reduced. Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no increase in the maximum response. This contrasted with ADP and TxA2, both of which evoked considerably greater maximum responses in RGS10-/- platelets with enhanced Gq- and Gi-mediated signaling. Shape change, which is G13-mediated, was unaffected. Finally, we found that free RGS10 levels in platelets are actively regulated. In resting platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3γ. Platelet activation caused an increase in free RGS10, as did the endothelium-derived platelet antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an actively regulated node on the platelet signaling network, helping to produce smaller and more densely packed hemostatic thrombi with a greater proportion of fully activated platelets.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Oligopeptídeos/farmacologia , Proteínas RGS/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombose/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas RGS/genética , Receptores de Trombina/agonistas , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombose/tratamento farmacológico , Trombose/genética , Trombose/patologia , Tromboxano A2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...