Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thyroid ; 30(2): 204-213, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31928178

RESUMO

Background: Our genome sequencing analysis revealed a frameshift mutation in the shelterin gene TINF2 in a large family with individuals affected with papillary thyroid carcinoma (PTC) and melanoma. Here, we further characterized the mutation and screened for coding variants in the 6 shelterin genes in 24 families. Methods: Sanger sequencing was performed to screen for the TINF2 mutation in the key family. Quantitative reverse transcription-polymerase chain reaction (PCR) was used for TINF2 gene expression analysis. Exogenous expression and co-immunoprecipitation techniques were used for assessing TINF2 binding to TERF1. Relative telomere length (RTL) was quantified in DNAs from lymphocytes by using quantitative real-time PCR. Whole exome sequencing (WES) was performed in seven families with individuals affected with PTC and other cancer types. Screening for DNA variants in shelterin genes was performed by using whole genome sequencing data from 17 families and WES data from 7 further families. Results: The TINF2 mutation (TINF2 p.Trp198fs) showed complete co-segregation with PTC and melanoma in the key family. The mutation is not reported in databases and not identified in 23 other families we screened. The expression of TINF2 was borderline reduced in individuals with the mutation. The truncated TINF2 protein showed abolished binding to TERF1. The RTL in the individuals with the mutation was significantly longer when compared with those without the mutation from the same family as well as compared with 62 healthy controls. Among the 24 families, we identified 3 missense and 1 synonymous variant(s) in 2 shelterin genes (TINF2 and ACD). Conclusions: The rare frameshift mutation in the TINF2 gene and the associated longer telomere length suggest that dysregulated telomeres could be a mechanism predisposing to PTC and melanoma. DNA coding variants in shelterin genes are rare. Further studies are required to evaluate the roles of variants in shelterin genes in thyroid cancer and melanoma.


Assuntos
Adenocarcinoma Folicular/genética , Mutação em Linhagem Germinativa , Melanoma/genética , Proteínas de Ligação a Telômeros/genética , Telômero , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade
2.
Thyroid ; 29(7): 946-955, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957677

RESUMO

Background: Familial non-medullary thyroid cancer (NMTC) accounts for a relatively small proportion of thyroid cancer cases, but it displays strong genetic predisposition. So far, only a few NMTC susceptible genes and low-penetrance variants contributing to NMTC have been described. This study aimed to identify rare germline variants that may predispose individuals to NMTC by sequencing a cohort of 17 NMTC families. Methods: Whole-genome sequencing and genome-wide linkage analysis were performed in 17 NMTC families. MendelScan and BasePlayer were applied to screen germline variants followed by customized filtering. The remaining candidate variants were subsequently validated by Sanger sequencing. A panel of 277 known cancer predisposition genes was also screened in these families. Results: A total of 41 rare coding candidate variants in 40 genes identified by whole-genome sequencing are reported, including 24 missense, five frameshift, five splice change, and seven nonsense variants. Sanger sequencing confirmed all 41 rare variants and proved their co-segregation with NMTC in the extended pedigrees. In silico functional analysis of the candidate genes using Ingenuity Pathway Analysis showed that cancer was the top category of "Diseases and Disorders." Additionally, a targeted search displayed six variants in known cancer predisposition genes, including one frameshift variant and five missense variants. Conclusions: The data identify rare germline variants that may play important roles in NMTC predisposition. It is proposed that in future research including functional characterization, these variants and genes be considered primary candidates for thyroid cancer predisposition.


Assuntos
Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Papilar/genética , Simulação por Computador , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...