Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Circ Genom Precis Med ; 16(5): 452-461, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37767697

RESUMO

BACKGROUND: Many cardiovascular disorders propel the development of advanced heart failure that necessitates cardiac transplantation. When treatable causes are excluded, studies to define causes are often abandoned, resulting in a diagnosis of end-stage idiopathic cardiomyopathy. We studied whether DNA sequence analyses could identify unrecognized causes of end-stage nonischemic cardiomyopathy requiring heart transplantation and whether the prevalence of genetic causes differed from ambulatory cardiomyopathy cases. METHODS: We performed whole exome and genome sequencing of 122 explanted hearts from 101 adult and 21 pediatric patients with idiopathic cardiomyopathy from a single center. Data were analyzed for pathogenic/likely pathogenic variants in nuclear and mitochondrial genomes and assessed for nonhuman microbial sequences. The frequency of damaging genetic variants was compared among cardiomyopathy cohorts with different clinical severity. RESULTS: Fifty-four samples (44.3%) had pathogenic/likely pathogenic cardiomyopathy gene variants. The frequency of pathogenic variants was similar in pediatric (42.9%) and adult (43.6%) samples, but the distribution of mutated genes differed (P=8.30×10-4). The prevalence of causal genetic variants was significantly higher in end-stage than in previously reported ambulatory adult dilated cardiomyopathy cases (P<0.001). Among remaining samples with unexplained causes, no damaging mitochondrial variants were identified, but 28 samples contained parvovirus genome sequences, including 2 samples with 6- to 9-fold higher levels than the overall mean levels in other samples. CONCLUSIONS: Pathogenic variants and viral myocarditis were identified in 45.9% of patients with unexplained end-stage cardiomyopathy. Damaging gene variants are significantly more frequent among transplant compared with patients with ambulatory cardiomyopathy. Genetic analyses can help define cause of end-stage cardiomyopathy to guide management and risk stratification of patients and family members.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Transplante de Coração , Adulto , Humanos , Criança , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/cirurgia , Cardiomiopatia Dilatada/diagnóstico , Insuficiência Cardíaca/diagnóstico
2.
Circ Genom Precis Med ; 16(3): 224-231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165897

RESUMO

BACKGROUND: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing. METHODS: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10-6) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach. RESULTS: We identified 53 de novo and 74 rare variants in CHD cases that alter splicing and thus are loss of function. Of these, 77 variants are in known dominant, recessive, and candidate CHD genes, including KMT2D and RBFOX2. In 1 case, we confirmed the variant's predicted impact on RNA splicing in RNA transcripts from the proband's cardiac tissue. Two probands were found to have 2 loss-of-function variants for recessive CHD genes HECTD1 and DYNC2H1. In addition, SpliceAI-a predictive algorithm for altered RNA splicing-has a positive predictive value of ≈93% in our cohort. CONCLUSIONS: Through assessment of RNA splicing, we identified a new loss-of-function variant within a CHD gene in 78 probands, of whom 69 (1.5%; n=4472) did not have a previously established genetic explanation for CHD. Identification of splice-altering variants improves diagnostic classification and genetic diagnoses for CHD. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT01196182.


Assuntos
Cardiopatias Congênitas , RNA , Criança , Humanos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Splicing de RNA , Frequência do Gene , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
3.
Genet Med ; 25(1): 143-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260083

RESUMO

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Assuntos
Microtia Congênita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congênita/genética , Orelha/anormalidades , Face
4.
Circulation ; 146(22): 1674-1693, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36321451

RESUMO

BACKGROUND: ALPK3 encodes α-kinase 3, a muscle-specific protein of unknown function. ALPK3 loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood. METHODS: We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues. RESULTS: Multiple sequence alignment of all human α-kinase domains and their orthologs revealed 4 conserved residues that were variant only in ALPK3, demonstrating evolutionary divergence of the ALPK3 α-kinase domain sequence. Phosphoproteomic evaluation of both ALPK3 kinase domain inhibition and overexpression failed to detect significant changes in catalytic activity, establishing ALPK3 as a pseudokinase. Investigations into alternative functions revealed that ALPK3 colocalized with myomesin proteins (MYOM1, MYOM2) at both the nuclear envelope and the sarcomere M-band. ALPK3 loss-of-function variants caused myomesin proteins to mislocalize and also dysregulated several additional M-band proteins involved in sarcomere protein turnover, which ultimately impaired cardiomyocyte structure and function. CONCLUSIONS: ALPK3 is an essential cardiac pseudokinase that inserts in the nuclear envelope and the sarcomere M-band. Loss of ALPK3 causes mislocalization of myomesins, critical force-buffering proteins in cardiomyocytes, and also dysregulates M-band proteins necessary for sarcomere protein turnover. We conclude that ALPK3 cardiomyopathy induces ventricular dilatation caused by insufficient myomesin-mediated force buffering and hypertrophy by impairment of sarcomere proteostasis.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Proteínas Musculares , Proteínas Quinases , Adulto , Animais , Criança , Humanos , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Conectina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Proteínas Quinases/genética
5.
Proc Natl Acad Sci U S A ; 119(21): e2203928119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35584116

RESUMO

Microtia is a congenital malformation that encompasses mild hypoplasia to complete loss of the external ear, or pinna. Although the contribution of genetic variation and environmental factors to microtia remains elusive, Amerindigenous populations have the highest reported incidence. Here, using both transmission disequilibrium tests and association studies in microtia trios (parents and affected child) and microtia cohorts enrolled in Latin America, we map an ∼10-kb microtia locus (odds ratio = 4.7; P = 6.78e-18) to the intergenic region between Roundabout 1 (ROBO1) and Roundabout 2 (ROBO2) (chr3: 78546526 to 78555137). While alleles at the microtia locus significantly increase the risk of microtia, their penetrance is low (<1%). We demonstrate that the microtia locus contains a polymorphic complex repeat element that is expanded in affected individuals. The locus is located near a chromatin loop region that regulates ROBO1 and ROBO2 expression in induced pluripotent stem cell­derived neural crest cells. Furthermore, we use single nuclear RNA sequencing to demonstrate ROBO1 and ROBO2 expression in both fibroblasts and chondrocytes of the mature human pinna. Because the microtia allele is enriched in Amerindigenous populations and is shared by some East Asian subjects with craniofacial malformations, we propose that both populations share a mutation that arose in a common ancestor prior to the ancient migration of Eurasian populations into the Americas and that the high incidence of microtia among Amerindigenous populations reflects the population bottleneck that occurred during the migration out of Eurasia.


Assuntos
Indígena Americano ou Nativo do Alasca , Microtia Congênita , Microtia Congênita/genética , Orelha Externa , Efeito Fundador , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Indígena Americano ou Nativo do Alasca/genética , Proteínas Roundabout
6.
Circ Genom Precis Med ; 14(5): e003389, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461741

RESUMO

BACKGROUND: Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS: Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS: Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS: Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Éxons , Heterozigoto , Splicing de RNA , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658374

RESUMO

Hypertrophic cardiomyopathy (HCM) is a disease of heart muscle, which affects ∼1 in 500 individuals and is characterized by increased left ventricular wall thickness. While HCM is caused by pathogenic variants in any one of eight sarcomere protein genes, clinical expression varies considerably, even among patients with the same pathogenic variant. To determine whether background genetic variation or environmental factors drive these differences, we studied disease progression in 11 pairs of monozygotic HCM twins. The twin pairs were followed for 5 to 14 y, and left ventricular wall thickness, left atrial diameter, and left ventricular ejection fraction were collected from echocardiograms at various time points. All nine twin pairs with sarcomere protein gene variants and two with unknown disease etiologies had discordant morphologic features of the heart, demonstrating the influence of nonhereditable factors on clinical expression of HCM. Whole genome sequencing analysis of the six monozygotic twins with discordant HCM phenotypes did not reveal notable somatic genetic variants that might explain their clinical differences. Discordant cardiac morphology of identical twins highlights a significant role for epigenetics and environment in HCM disease progression.


Assuntos
Cardiomiopatia Hipertrófica , Ecocardiografia , Epigênese Genética , Ventrículos do Coração , Proteínas Musculares , Gêmeos Monozigóticos , Adolescente , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Pré-Escolar , Feminino , Seguimentos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
10.
PLoS Genet ; 16(11): e1009189, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216750

RESUMO

Although DNA methylation is the best characterized epigenetic mark, the mechanism by which it is targeted to specific regions in the genome remains unclear. Recent studies have revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA sequences that mainly operate via DNA-binding factors. Consistent with this finding, we have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants (SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anomalies. These data raise the hypothesis that rare genetic variation at transcription factor binding sites (TFBSs) might contribute to local DNA methylation patterning. In this work, by combining blood genome-wide DNA methylation profiles, whole genome sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS motifs derived from ENCODE ChIP-Seq data, we observed an association between the disruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values at both local and, to a lesser extent, distant CpGs. While the majority of these changes affected only single CpGs, 24% were associated with multiple outlier CpGs within ±1kb of the disrupted TFBS. Interestingly, disruption of functionally constrained sites within TF motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these findings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an association between rare SNV-directed DNA methylation and outlier expression of nearby genes. In conclusion, our findings not only provide insights into the effect of rare genetic variation at TFBS on shaping local DNA methylation and its consequences on genome regulation, but also provide a rationale to incorporate DNA methylation data to interpret the functional role of rare variants.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigênese Genética , Genoma Humano/genética , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Sítios de Ligação/genética , Criança , Pré-Escolar , Sequenciamento de Cromatina por Imunoprecipitação , Estudos de Coortes , Feminino , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Elife ; 92020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054971

RESUMO

Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function (LoF) and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. LoF variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4, FOXA1/2, and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants.


Assuntos
Diafragma/crescimento & desenvolvimento , Fator de Transcrição GATA6/genética , Coração/crescimento & desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Pâncreas/crescimento & desenvolvimento , Diferenciação Celular/genética , Epigênese Genética/genética , Perfilação da Expressão Gênica , Humanos , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/metabolismo
12.
Circ Genom Precis Med ; 13(5): 444-452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885985

RESUMO

BACKGROUND: Cardiac troponin I (TNNI3) gene mutations account for 3% of hypertrophic cardiomyopathy and carriers have a heterogeneous phenotype, with increased risk of sudden cardiac death (SCD). Only one mutation (p.Arg21Cys) has been reported in the N terminus of the protein. In model organisms, it impairs PKA (protein kinase A) phosphorylation, increases calcium sensitivity, and causes diastolic dysfunction. The phenotype of this unique mutation in patients with hypertrophic cardiomyopathy remains unknown. METHODS: We sequenced 29 families with hypertrophic cardiomyopathy enriched for pediatric-onset disease and identified 5 families with the TNNI3 p.Arg21Cys mutation. Using cascade screening, we studied the clinical phenotype of 57 individuals from the 5 families with TNNI3 p.Arg21Cys-related cardiomyopathy. We performed survival analysis investigating the age at first SCD in carriers of the mutation. RESULTS: All 5 families with TNNI3 p.Arg21Cys were from South Lebanon. TNNI3 p.Arg21Cys-related cardiomyopathy manifested a malignant phenotype-SCD occurred in 30 (53%) of 57 affected individuals at a median age of 22.5 years. In select carriers without left ventricular hypertrophy on echocardiogram, SCD occurred, myocyte disarray was found on autopsy heart, and tissue Doppler and cardiac magnetic resonance imaging identified subclinical disease features such as diastolic dysfunction and late gadolinium enhancement. CONCLUSIONS: The TNNI3 p.Arg21Cys mutation has a founder effect in South Lebanon and causes malignant hypertrophic cardiomyopathy with early SCD even in the absence of hypertrophy. Genetic diagnosis with this mutation may be sufficient for risk stratification for SCD.


Assuntos
Cardiomiopatia Hipertrófica/genética , Troponina I/genética , Adolescente , Adulto , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Morte Súbita Cardíaca/etiologia , Ecocardiografia , Feminino , Efeito Fundador , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Linhagem , Fenótipo , Domínios Proteicos/genética , Troponina I/química , Adulto Jovem
13.
Nat Genet ; 52(8): 769-777, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601476

RESUMO

A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.


Assuntos
Variação Genética/genética , Cardiopatias Congênitas/genética , RNA não Traduzido/genética , Adolescente , Adulto , Animais , Feminino , Predisposição Genética para Doença/genética , Genômica , Coração/fisiologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética , Adulto Jovem
14.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603312

RESUMO

The bromodomain and extraterminal (BET) family comprises epigenetic reader proteins that are important regulators of inflammatory and hypertrophic gene expression in the heart. We previously identified the activation of proinflammatory gene networks as a key early driver of dilated cardiomyopathy (DCM) in transgenic mice expressing a mutant form of phospholamban (PLNR9C) - a genetic cause of DCM in humans. We hypothesized that BETs coactivate this inflammatory process, representing a critical node in the progression of DCM. To test this hypothesis, we treated PLNR9C or age-matched WT mice longitudinally with the small molecule BET bromodomain inhibitor JQ1 or vehicle. BET inhibition abrogated adverse cardiac remodeling, reduced cardiac fibrosis, and prolonged survival in PLNR9C mice by inhibiting expression of proinflammatory gene networks at all stages of disease. Specifically, JQ1 had profound effects on proinflammatory gene network expression in cardiac fibroblasts, while having little effect on gene expression in cardiomyocytes. Cardiac fibroblast proliferation was also substantially reduced by JQ1. Mechanistically, we demonstrated that BRD4 serves as a direct and essential regulator of NF-κB-mediated proinflammatory gene expression in cardiac fibroblasts. Suppressing proinflammatory gene expression via BET bromodomain inhibition could be a novel therapeutic strategy for chronic DCM in humans.


Assuntos
Azepinas/farmacologia , Proteínas de Ligação ao Cálcio/fisiologia , Cardiomiopatia Dilatada/prevenção & controle , Fibrose/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Circulation ; 140(1): 31-41, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987448

RESUMO

BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.


Assuntos
Antineoplásicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Variação Genética/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Idoso , Animais , Cardiomiopatias/epidemiologia , Estudos de Coortes , Feminino , Variação Genética/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos
16.
Genet Med ; 21(1): 133-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29892087

RESUMO

PURPOSE: We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS: Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS: A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION: Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Doenças Raras/diagnóstico , Doenças Raras/patologia
17.
Nat Genet ; 49(11): 1593-1601, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991257

RESUMO

Congenital heart disease (CHD) is the leading cause of mortality from birth defects. Here, exome sequencing of a single cohort of 2,871 CHD probands, including 2,645 parent-offspring trios, implicated rare inherited mutations in 1.8%, including a recessive founder mutation in GDF1 accounting for ∼5% of severe CHD in Ashkenazim, recessive genotypes in MYH6 accounting for ∼11% of Shone complex, and dominant FLT4 mutations accounting for 2.3% of Tetralogy of Fallot. De novo mutations (DNMs) accounted for 8% of cases, including ∼3% of isolated CHD patients and ∼28% with both neurodevelopmental and extra-cardiac congenital anomalies. Seven genes surpassed thresholds for genome-wide significance, and 12 genes not previously implicated in CHD had >70% probability of being disease related. DNMs in ∼440 genes were inferred to contribute to CHD. Striking overlap between genes with damaging DNMs in probands with CHD and autism was also found.


Assuntos
Transtorno Autístico/genética , Miosinas Cardíacas/genética , Predisposição Genética para Doença , Fator 1 de Diferenciação de Crescimento/genética , Cardiopatias Congênitas/genética , Cadeias Pesadas de Miosina/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto , Transtorno Autístico/patologia , Estudos de Casos e Controles , Criança , Exoma , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/patologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Risco
18.
Proc Natl Acad Sci U S A ; 114(29): 7689-7694, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679633

RESUMO

Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C (LMNA) and myosin binding protein C (MYBPC3). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.


Assuntos
Proteínas de Transporte/genética , Lamina Tipo A/genética , Mutação , Splicing de RNA , Adulto , Idoso , Alelos , Cardiomiopatias/genética , Biologia Computacional , Feminino , Variação Genética , Genótipo , Células HEK293 , Haploinsuficiência , Cardiopatias/genética , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Marca-Passo Artificial , Linhagem , Sítios de Splice de RNA , Análise de Sequência de DNA , Adulto Jovem
19.
Stroke ; 47(12): 3005-3013, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27895300

RESUMO

BACKGROUND AND PURPOSE: A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage. This study seeks to define a specific gene whose mutation leads to disease. METHODS: More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 (thrombospondin type 1 domain containing protein 1) mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses and functional studies performed using an in vitro endothelial cell model. RESULTS: A nonsense mutation in THSD1 was identified that segregated with the 9 affected (3 suffered subarachnoid hemorrhage and 6 had unruptured IA) and was absent in 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered subarachnoid hemorrhage (1.6% [95% confidence interval, 0.8%-3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89 040 chromosomes in Exome Aggregation Consortium (ExAC) database (P<0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. CONCLUSIONS: This report identifies THSD1 mutations in familial and sporadic IA patients and shows that THSD1 loss results in cerebral bleeding in 2 animal models. This finding provides new insight into IA and subarachnoid hemorrhage pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion.


Assuntos
Aneurisma Roto/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Trombospondinas/genética , Animais , Códon sem Sentido , Modelos Animais de Doenças , Exoma , Predisposição Genética para Doença , Humanos , Camundongos , Linhagem , Peixe-Zebra , Proteínas de Peixe-Zebra
20.
Nat Commun ; 7: 12824, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670201

RESUMO

Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression-this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression.


Assuntos
Cardiopatias Congênitas/metabolismo , RNA/metabolismo , Adolescente , Adulto , Idoso , Alelos , Aorta/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feto , Expressão Gênica , Estudos de Associação Genética , Impressão Genômica , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Miocárdio/metabolismo , Artéria Pulmonar/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...