Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(4): 1108-1119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36544242

RESUMO

Glioblastoma (GBM) is the most common form of brain cancer. Even with aggressive treatment, tumor recurrence is almost universal and patient prognosis is poor because many GBM cell subpopulations, especially the mesenchymal and glioma stem cell populations, are resistant to temozolomide (TMZ), the most commonly used chemotherapeutic in GBM. For this reason, there is an urgent need for the development of new therapies that can more effectively treat GBM. Several recent studies have indicated that high expression of connexin 43 (Cx43) in GBM is associated with poor patient outcomes. It has been hypothesized that inhibition of the Cx43 hemichannels could prevent TMZ efflux and sensitize otherwise resistance cells to the treatment. In this study, we use a three-dimensional organoid model of GBM to demonstrate that combinatorial treatment with TMZ and αCT1, a Cx43 mimetic peptide, significantly improves treatment efficacy in certain populations of GBM. Confocal imaging was used to visualize changes in Cx43 expression in response to combinatorial treatment. These results indicate that Cx43 inhibition should be pursued further as an improved treatment for GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Conexina 43/metabolismo , Conexina 43/farmacologia , Conexina 43/uso terapêutico , Transdução de Sinais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Peptídeos/farmacologia
2.
iScience ; 25(7): 104645, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35811850

RESUMO

Primary tumors secrete large quantities of cytokines and exosomes into the bloodstream, which are uptaken at downstream sites and induce a pro-fibrotic, pro-inflammatory premetastatic niche. Niche development is associated with later increased metastatic burden, but the cellular and matrix changes in the niche that facilitate metastasis are yet unknown. Furthermore, there is no current standard model to study this phenomenon. Here, biofabricated collagen and hyaluronic acid hydrogel models were employed to identify matrix changes elicited by pericytes and fibroblasts after exposure to colorectal cancer-secreted factors. Focusing on myofibroblast activation and collagen remodeling, we report fibroblast activation and pericyte stunting in response to tumor signaling. In addition, we characterize contributions of both cell types to matrix dysregulation via collagen degradation, deposition, and architectural remodeling. With these findings, we discuss potential impacts on tissue stiffening and vascular leakiness and suggest pathways of interest for future mechanistic studies of metastatic cell-premetastatic niche interactions.

3.
PLoS One ; 17(1): e0262173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051193

RESUMO

The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-6/metabolismo , Ácido Linoleico/metabolismo , Adulto , Alelos , Técnicas de Cultura de Células/métodos , Colesterol/metabolismo , Feminino , Genótipo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hidrogéis/química , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
4.
Adv Drug Deliv Rev ; 180: 114067, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822927

RESUMO

In recent years, many research groups have begun to utilize bioengineered in vitro models of cancer to study mechanisms of disease progression, test drug candidates, and develop platforms to advance personalized drug treatment options. Due to advances in cell and tissue engineering over the last few decades, there are now a myriad of tools that can be used to create such in vitro systems. In this review, we describe the considerations one must take when developing model systems that accurately mimic the in vivo tumor microenvironment (TME) and can be used to answer specific scientific questions. We will summarize the importance of cell sourcing in models with one or multiple cell types and outline the importance of choosing biomaterials that accurately mimic the native extracellular matrix (ECM) of the tumor or tissue that is being modeled. We then provide examples of how these two components can be used in concert in a variety of model form factors and conclude by discussing how biofabrication techniques such as bioprinting and organ-on-a-chip fabrication can be used to create highly reproducible complex in vitro models. Since this topic has a broad range of applications, we use the final section of the review to dive deeper into one type of cancer, glioblastoma, to illustrate how these components come together to further our knowledge of cancer biology and move us closer to developing novel drugs and systems that improve patient outcomes.


Assuntos
Glioblastoma/patologia , Engenharia Tecidual/métodos , Microambiente Tumoral/fisiologia , Animais , Materiais Biocompatíveis/metabolismo , Bioimpressão/métodos , Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Dispositivos Lab-On-A-Chip , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...