Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 308(2): 410-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14610241

RESUMO

In the studies reported here, the ability of atomoxetine hydrochloride (Strattera) to inhibit or induce the metabolic capabilities of selected human isoforms of cytochrome P450 was evaluated. Initially, the potential of atomoxetine and its two metabolites, N-desmethylatomoxetine and 4-hydroxyatomoxetine, to inhibit the metabolism of probe substrates for CYP1A2, CYP2C9, CYP2D6, and CYP3A was evaluated in human hepatic microsomes. Although little inhibition of CYP1A2 and CYP2C9 activity was observed, inhibition was predicted for CYP3A (56% predicted inhibition) and CYP2D6 (60% predicted inhibition) at concentrations representative of high therapeutic doses of atomoxetine. The ability of atomoxetine to induce the catalytic activities of CYP1A2 and CYP3A in human hepatocytes was also evaluated; however, atomoxetine did not induce either isoenzyme. Based on the potential of interaction from the in vitro experiments, drug interaction studies in healthy subjects were conducted using probe substrates for CYP2D6 (desipramine) in CYP2D6 extensive metabolizer subjects and CYP3A (midazolam) in CYP2D6 poor metabolizer subjects. Single-dose pharmacokinetic parameters of desipramine (single dose of 50 mg) were not altered when coadministered with atomoxetine (40 or 60 mg b.i.d. for 13 days). Only modest changes (approximately 16%) were observed in the plasma pharmacokinetics of midazolam (single dose of 5 mg) when coadministered with atomoxetine (60 mg b.i.d. for 12 days). Although at high therapeutic doses of atomoxetine inhibition of CYP2D6 and CYP3A was predicted, definitive in vivo studies clearly indicate that atomoxetine administration with substrates of CYP2D6 and CYP3A does not result in clinically significant drug interactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Microssomos Hepáticos/metabolismo , Propilaminas/metabolismo , Cloridrato de Atomoxetina , Citocromo P-450 CYP2C9 , Diclofenaco/metabolismo , Interações Medicamentosas , Etanolaminas/metabolismo , Humanos , Hidroxilação , Microssomos Hepáticos/enzimologia , Midazolam/metabolismo , Fenacetina/metabolismo
2.
Clin Pharmacol Ther ; 73(3): 178-91, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12621383

RESUMO

BACKGROUND AND OBJECTIVES: Atomoxetine is a treatment for attention-deficit/hyperactivity disorder and is primarily eliminated via cytochrome P4502D6 (CYP2D6). The pharmacokinetics of atomoxetine and its primary metabolites were investigated in 10 adults with hepatic impairment (6 moderate, 4 severe) and 10 age- and sex-matched control subjects, all being genotyped as CYP2D6 extensive metabolizers. METHODS: A single oral 20-mg dose of atomoxetine was given. Multiple blood samples were collected for 48 hours in healthy subjects and for 120 hours in patients. Urine was collected up to 24 hours. Before atomoxetine administration (10-20 days), sorbitol clearance and debrisoquin (INN, debrisoquine) metabolic ratio were determined as markers of hepatic blood flow and CYP2D6 activity, respectively. RESULTS: The systemic clearance of atomoxetine was significantly reduced in those with hepatic impairment compared with controls, thereby resulting in increased exposure (area under the concentration-time curve from time 0 to infinity, 1.58 versus 0.85 microg. h(-1). mL(-1); P =.035) but no change in maximum concentration. Mean 4-hydroxyatomoxetine area under the concentration-time curve from time 0 to time t and maximum concentration were increased approximately 7-fold and 2-fold, respectively (P =.0001 and P =.0056, respectively). For the glucuronide conjugate of 4-hydroxyatomoxetine, the mean half-life was longer and the mean area under the concentration-time curve from time 0 to infinity and the maximum concentration were lower (P =.0028, P =.003, and P =.0001, respectively). The sorbitol clearance was lower and the debrisoquin metabolic ratio was higher, reflecting reduced hepatic blood flow and decreased CYP2D6 activity, respectively. Decreased atomoxetine clearance in patients with hepatic impairment was clearly correlated with decreased CYP2D6 activity and decreased hepatic blood flow. Mean atomoxetine plasma protein binding was lower in patients with hepatic impairment compared with controls (96.5% versus 98.7%, P =.0008). Atomoxetine was well tolerated in the 2 populations. CONCLUSION: For patients with attention-deficit/hyperactivity disorder who have hepatic impairment, dosage adjustment is recommended. Initial target doses should be reduced to 25% and 50% of the normal dose for patients with severe and moderate hepatic impairment, respectively.


Assuntos
Antidepressivos/farmacocinética , Cirrose Hepática/metabolismo , Propilaminas/farmacocinética , Administração Oral , Adulto , Antidepressivos/administração & dosagem , Antidepressivos/sangue , Antidepressivos/urina , Área Sob a Curva , Cloridrato de Atomoxetina , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Estudos de Casos e Controles , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Debrisoquina/metabolismo , Debrisoquina/urina , Feminino , Humanos , Cirrose Hepática/patologia , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Propilaminas/administração & dosagem , Propilaminas/sangue , Propilaminas/urina , Índice de Gravidade de Doença , Sorbitol/sangue , Sorbitol/metabolismo
3.
Drug Metab Dispos ; 31(1): 98-107, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12485958

RESUMO

The role of the polymorphic cytochrome p450 2D6 (CYP2D6) in the pharmacokinetics of atomoxetine hydrochloride [(-)-N-methyl-gamma-(2-methylphenoxy)benzenepropanamine hydrochloride; LY139603] has been documented following both single and multiple doses of the drug. In this study, the influence of the CYP2D6 polymorphism on the overall disposition and metabolism of a 20-mg dose of (14)C-atomoxetine was evaluated in CYP2D6 extensive metabolizer (EM; n = 4) and poor metabolizer (PM; n = 3) subjects under steady-state conditions. Atomoxetine was well absorbed from the gastrointestinal tract and cleared primarily by metabolism with the preponderance of radioactivity being excreted into the urine. In EM subjects, the majority of the radioactive dose was excreted within 24 h, whereas in PM subjects the majority of the dose was excreted by 72 h. The biotransformation of atomoxetine was similar in all subjects undergoing aromatic ring hydroxylation, benzylic oxidation, and N-demethylation with no CYP2D6 phenotype-specific metabolites. The primary oxidative metabolite of atomoxetine was 4-hydroxyatomoxetine, which was subsequently conjugated forming 4-hydroxyatomoxetine-O-glucuronide. Due to the absence of CYP2D6 activity, the systemic exposure to radioactivity was prolonged in PM subjects (t(1/2) = 62 h) compared with EM subjects (t(1/2) = 18 h). In EM subjects, atomoxetine (t(1/2) = 5 h) and 4-hydroxyatomoxetine-O-glucuronide (t(1/2) = 7 h) were the principle circulating species, whereas atomoxetine (t(1/2) = 20 h) and N-desmethylatomoxetine (t(1/2) = 33 h) were the principle circulating species in PM subjects. Although differences were observed in the excretion and relative amounts of metabolites formed, the primary difference observed between EM and PM subjects was the rate at which atomoxetine was biotransformed to 4-hydroxyatomoxetine.


Assuntos
Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Propilaminas/metabolismo , Adulto , Cloridrato de Atomoxetina , Biotransformação/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Propilaminas/sangue , Propilaminas/química , Propilaminas/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...