Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8003): 306-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480965

RESUMO

Particle fabrication has attracted recent attention owing to its diverse applications in bioengineering1,2, drug and vaccine delivery3-5, microfluidics6,7, granular systems8,9, self-assembly5,10,11, microelectronics12,13 and abrasives14. Herein we introduce a scalable, high-resolution, 3D printing technique for the fabrication of shape-specific particles based on roll-to-roll continuous liquid interface production (r2rCLIP). We demonstrate r2rCLIP using single-digit, micron-resolution optics in combination with a continuous roll of film (in lieu of a static platform), enabling the rapidly permutable fabrication and harvesting of shape-specific particles from a variety of materials and with complex geometries, including geometries not possible to achieve with advanced mould-based techniques. We demonstrate r2rCLIP production of mouldable and non-mouldable shapes with voxel sizes as small as 2.0 × 2.0 µm2 in the print plane and 1.1 ± 0.3 µm unsupported thickness, at speeds of up to 1,000,000 particles per day. Such microscopic particles with permutable, intricate designs enable direct integration within biomedical, analytical and advanced materials applications.

2.
Chem Sci ; 14(44): 12535-12540, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020396

RESUMO

Achieving a circular plastics economy is one of our greatest environmental challenges, yet conventional mechanical recycling remains inadequate for thermoplastics and incompatible with thermosets. The next generation of plastic materials will be designed with the capacity for degradation and recycling at end-of-use. To address this opportunity in the burgeoning technologies of 3D printing and photolithography, we report a modular system for the production of degradable and recyclable thermosets via photopolymerization. The polyurethane backbone imparts robust, elastic, and tunable mechanical properties, while the use of hemiacetal ester linkages allows for facile degradation under mild acid. The synthetic design based on hemiacetal esters enables simple purification to regenerate a functional polyurethane diol.

3.
JACS Au ; 2(11): 2426-2445, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465529

RESUMO

The intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved. The DeSimone Laboratory has recently developed a high-resolution continuous liquid interface production (CLIP) 3D printing technology. This 3D printer uses light and oxygen to enable a continuous, noncontact polymerization dead zone at the build surface, allowing for rapid production of MAPs with precise and tunable geometries. Using this tool, we are now able to produce new classes of lattice MAPs (L-MAPs) and dynamic MAPs (D-MAPs) that can deliver both solid state and liquid cargos and are also capable of sampling interstitial fluid. Herein, we will explore how additive manufacturing can revolutionize MAP development and open new doors for minimally invasive drug delivery and diagnostic platforms.

4.
Sci Adv ; 8(46): eabq2846, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383664

RESUMO

To date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process. A print strategy with tunable parameters informed by the simulation model is adopted to achieve both the optimal resolution and the maximum print speed. Together, the high-resolution 3D CLIP printer has opened the door to various applications including, but not limited to, biomedical, MEMS, and microelectronics.

5.
Sci Adv ; 8(39): eabq3917, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170357

RESUMO

In additive manufacturing, it is imperative to increase print speeds, use higher-viscosity resins, and print with multiple different resins simultaneously. To this end, we introduce a previously unexplored ultraviolet-based photopolymerization three-dimensional printing process. The method exploits a continuous liquid interface-the dead zone-mechanically fed with resin at elevated pressures through microfluidic channels dynamically created and integral to the growing part. Through this mass transport control, injection continuous liquid interface production, or iCLIP, can accelerate printing speeds to 5- to 10-fold over current methods such as CLIP, can use resins an order of magnitude more viscous than CLIP, and can readily pattern a single heterogeneous object with different resins in all Cartesian coordinates. We characterize the process parameters governing iCLIP and demonstrate use cases for rapidly printing carbon nanotube-filled composites, multimaterial features with length scales spanning several orders of magnitude, and lattices with tunable moduli and energy absorption.

6.
Addit Manuf ; 552022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35602181

RESUMO

Resolving microscopic and complex 3D polymeric structures while maintaining high print speeds in additive manufacturing has been challenging. To achieve print precision at micrometer length scales for polymeric materials, most 3D printing technologies utilize the serial voxel printing approach that has a relatively slow print speed. Here, a 30-µm-resolution continuous liquid interface production (CLIP)-based 3D printing system for printing polymeric microstructures is described. This technology combines the high-resolution from projection microstereolithography and the fast print speed from CLIP, thereby achieving micrometer print resolution at x103 times faster than other high-resolution 3D printing technologies. Print resolutions in both lateral and vertical directions were characterized, and the printability of minimum 30 µm features in 2D and 3D has been demonstrated. Through dynamic printing optimization, a method that varies the print parameters (e.g. exposure time, UV intensity, and dark time) for each print layer, overhanging struts at various thicknesses spanning 1 order of magnitude (25 µm - 200 µm) in a single print are resolvable. Taken together, this work illustrates that the micro-CLIP 3D printing technology, in combination with dynamic printing optimization, has the high resolution needed to enable manufacturing of exquisitely detailed and gradient 3D structures, such as terraced microneedle arrays and micro-lattice structures, while maintaining high print speeds.

7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551974

RESUMO

Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Impressão Tridimensional/instrumentação , Vacinação/métodos , Vacinas/administração & dosagem , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
9.
J Biomed Nanotechnol ; 16(4): 467-480, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970979

RESUMO

We developed a vaccine formulation containing ApoB derived P210 peptides as autoantigens, retinoic acid (RA) as an immune enhancer, both of which were delivered using PLGA nanoparticles. The formula was used to induce an immune response in 12-week-old male Apoe-/- mice with pre-existing atherosclerotic lesions. The nanotechnology platform PRINT® was used to fabricate PLGA nanoparticles that encapsulated RA inside and adsorbed the P210 onto the particle surface. In this study, we demonstrated that immunization of Apoe-/- mice with the formulation was able to considerably attenuate atherosclerotic lesions, accompanied by increased P210 specific IgM and another oxidized lipid derived autoantigen, M2AA, specific IgG autoantibodies, and decreased the inflammatory response, as compared to the P210 group with Freund's adjuvant. Our formulation represents an exciting technology to enhance the efficacy of the P210 vaccine.


Assuntos
Aterosclerose , Nanopartículas , Animais , Apolipoproteína B-100 , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Masculino , Camundongos , Peptídeos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tretinoína
10.
Vascul Pharmacol ; 133-134: 106777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750408

RESUMO

Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.


Assuntos
Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Placa Aterosclerótica , Sulfurtransferases/biossíntese , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/imunologia , Aterosclerose/patologia , Autoanticorpos/sangue , Modelos Animais de Doenças , Indução Enzimática , Lipoproteínas LDL/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Oxirredução , Estresse Oxidativo , Sulfurtransferases/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
11.
ACS Nano ; 14(6): 7200-7215, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32463690

RESUMO

CpG oligodeoxynucleotides are potent toll-like receptor (TLR) 9 agonists and have shown promise as anticancer agents in preclinical studies and clinical trials. Binding of CpG to TLR9 initiates a cascade of innate and adaptive immune responses, beginning with activation of dendritic cells and resulting in a range of secondary effects that include the secretion of pro-inflammatory cytokines, activation of natural killer cells, and expansion of T cell populations. Recent literature suggests that local delivery of CpG in tumors results in superior antitumor effects as compared to systemic delivery. In this study, we utilized PRINT (particle replication in nonwetting templates) nanoparticles as a vehicle to deliver CpG into murine lungs through orotracheal instillations. In two murine orthotopic metastasis models of non-small-cell lung cancer-344SQ (lung adenocarcinoma) and KAL-LN2E1 (lung squamous carcinoma), local delivery of PRINT-CpG into the lungs effectively promoted substantial tumor regression and also limited systemic toxicities associated with soluble CpG. Furthermore, cured mice were completely resistant to tumor rechallenge. Additionally, nanodelivery showed extended retention of CpG within the lungs as well as prolonged elevation of antitumor cytokines in the lungs, but no elevated levels of proinflammatory cytokines in the serum. These results demonstrate that PRINT-CpG is a potent nanoplatform for local treatment of lung cancer that has collateral therapeutic effects on systemic disease and an encouraging toxicity profile and may have the potential to treat lung metastasis of other cancer types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Animais , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Receptor Toll-Like 9
12.
ACS Cent Sci ; 5(3): 419-427, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30937369

RESUMO

Despite efforts to develop increasingly targeted and personalized cancer therapeutics, dosing of drugs in cancer chemotherapy is limited by systemic toxic side effects. We have designed, built, and deployed porous absorbers for capturing chemotherapy drugs from the bloodstream after these drugs have had their effect on a tumor, but before they are released into the body where they can cause hazardous side effects. The support structure of the absorbers was built using 3D printing technology. This structure was coated with a nanostructured block copolymer with outer blocks that anchor the polymer chains to the 3D printed support structure and a middle block that has an affinity for the drug. The middle block is polystyrenesulfonate which binds to doxorubicin, a widely used and effective chemotherapy drug with significant toxic side effects. The absorbers are designed for deployment during chemotherapy using minimally invasive image-guided endovascular surgical procedures. We show that the introduction of the absorbers into the blood of swine models enables the capture of 64 ± 6% of the administered drug (doxorubicin) without any immediate adverse effects. Problems related to blood clots, vein wall dissection, and other biocompatibility issues were not observed. This development represents a significant step forward in minimizing toxic side effects of chemotherapy.

13.
ACS Omega ; 4(3): 5547-5555, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30972374

RESUMO

Multiple studies have been published emphasizing the significant role of nanoparticle (NP) carriers in antigenic peptide-based subunit vaccines for the induction of potent humoral and cellular responses. Various design parameters of nanoparticle subunit vaccines such as linker chemistry, the proximity of antigenic peptide to NPs, and the density of antigenic peptides on the surface of NPs play an important role in antigen presentation to dendritic cells (DCs) and in subsequent induction of CD8+ T cell response. In this current study, we evaluated the role of peptide antigen proximity and density on DC uptake, antigen cross-presentation, in vitro T cell proliferation, and in vivo induction of CD8+ T cells. To evaluate the role of antigen proximity, CSIINFEKL peptides were systematically conjugated to poly(ethylene glycol) (PEG) hydrogels through N-hydroxysuccinimide-PEG-maleimide linkers of varying molecular weights: 2k, 5k, and 10k. We observed that the peptides conjugated to NPs via the 2k and 5k PEG linkers resulted in higher uptake in bone marrow-derived DCs (BMDCs) and increased p-MHC-I formation on the surface of bone marrow-derived DCs (BMDCs) as compared to the 10k PEG linker formulation. However, no significant differences in vitro T cell proliferation and induction of in vivo CD8+ T cells were found among linker lengths. To study the effect of antigen density, CSIINFEKL peptides were conjugated to PEG hydrogels via 5k PEG linkers at various densities. We found that high antigen density NPs presented the highest p-MHC-I on the surface of BMDCs and induced higher proliferation of T cells, whereas NPs with low peptide density resulted in higher DC cell uptake and elevated frequency of IFN-γ producing CD8+ T cells in mice as compared to the medium- and high-density formulations. Altogether, findings for these experiments highlighted the importance of linker length and peptide antigen density on DC cell uptake, antigen presentation, and induction of in vivo CD8+ T cell response.

14.
Phys Chem Chem Phys ; 21(15): 7857-7866, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916090

RESUMO

The performance of binary electrolytes is governed by three transport properties: conductivity, salt diffusion coefficient, and transference number. Rigorous methods for measuring conductivity and the salt diffusion coefficient are well established and used routinely in the literature. The commonly used methods for measuring transference number are the steady-state current method, t+,id, and pulsed field gradient NMR, t+,NMR. These methods yield the transference number only if the electrolyte is ideal, i.e., the salt dissociates completely into non-interacting anions and cations. In this work, we present a complete set of ion transport properties for mixtures of a functionalized perfluoroether, dimethyl carbonate terminated perfluorinated tetraethylene ether, and lithium bis(fluorosulfonyl)imide (LiFSI). The equations used to determine these properties from experimental data are based on Newman's concentrated solution theory. The concentrated-solution-theory-based transference number, t, is negative across all salt concentrations, and it increases with increasing salt concentration. In contrast, the ideal transference number, t+,id, is positive across all salt concentrations and it decreases with salt concentration. The NMR-based transference number, t+,NMR, is approximately 0.5, independent of salt concentration. The disparity between the three transference numbers, which indicates the dominance of ion clustering, is resolved by the use of Newman's concentrated solution theory.

15.
PLoS Negl Trop Dis ; 12(9): e0006793, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248097

RESUMO

Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic shock syndrome. Dengue vaccine development is challenging because of the need to induce protection against four antigenically distinct DENV serotypes. Recent studies indicate that tetravalent DENV vaccines must induce balanced, serotype-specific neutralizing antibodies to achieve durable protective immunity against all 4 serotypes. With the leading live attenuated tetravalent DENV vaccines, it has been difficult to achieve balanced and type-specific responses to each serotype, most likely because of unbalanced replication of vaccine viral strains. Here we evaluate a tetravalent DENV protein subunit vaccine, based on recombinant envelope protein (rE) adsorbed to the surface of poly (lactic-co-glycolic acid) (PLGA) nanoparticles for immunogenicity in mice. In monovalent and tetravalent formulations, we show that particulate rE induced higher neutralizing antibody titers compared to the soluble rE antigen alone. Importantly, we show the trend that tetravalent rE adsorbed to nanoparticles stimulated a more balanced serotype specific antibody response to each DENV serotype compared to soluble antigens. Our results demonstrate that tetravalent DENV subunit vaccines displayed on nanoparticles have the potential to overcome unbalanced immunity observed for leading live-attenuated vaccine candidates.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Nanopartículas/administração & dosagem , Proteínas Estruturais Virais/imunologia , Animais , Vacinas contra Dengue/administração & dosagem , Feminino , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
16.
Pharm Res ; 35(10): 195, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30141117

RESUMO

PURPOSE: Pulmonary delivery of biologics is of great interest, as it can be used for the local treatment of respiratory diseases or as a route to systemic drug delivery. To reach the full potential of inhaled biologics, a formulation platform capable of producing high performance aerosols without altering protein native structure is required. METHODS: A formulation strategy using Particle Replication in Non-wetting Templates (PRINT) was developed to produce protein dry powders with precisely engineered particle morphology. Stability of the incorporated proteins was characterized and the aerosol properties of the protein dry powders was evaluated in vitro with an Andersen Cascade Impactor (ACI). RESULTS: Model proteins bovine serum albumin (BSA) and lysozyme were micromolded into 1 µm cylinders composed of more than 80% protein, by mass. Extensive characterization of the incorporated proteins found no evidence of alteration of native structures. The BSA formulation produced a mass median aerodynamic diameter (MMAD) of 1.77 µm ± 0.06 and a geometric standard deviation (GSD) of 1.51 ± 0.06 while the lysozyme formulation had an MMAD of 1.83 µm ± 0.12 and a GSD of 1.44 ± 0.03. CONCLUSION: Protein dry powders manufactured with PRINT could enable high-performance delivery of protein therapeutics to the lungs.


Assuntos
Aerossóis/química , Pulmão , Pós/química , Soroalbumina Bovina/química , Administração por Inalação , Química Farmacêutica , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco , Humanos , Tamanho da Partícula
17.
J Control Release ; 284: 144-151, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29908892

RESUMO

Despite major advancements in cancer treatments, there are still many limitations to therapy including off-target effects, drug resistance, and control of cancer-related symptoms. There are opportunities for local drug delivery devices to intervene at various stages of cancer to provide curative and palliative benefit. Iontophoretic devices that deliver drugs locally to a region of interest have been adapted for the treatment of cancer. These devices have shown promise in pre-clinical and clinical studies for retinoblastoma, skin, bladder, and pancreatic cancers. Herein, we review iontophoretic devices used in the management of cancer.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Iontoforese/instrumentação , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Humanos , Iontoforese/métodos , Pesquisa Translacional Biomédica
18.
J Control Release ; 284: 122-132, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29894710

RESUMO

Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Microinjeções/instrumentação , Soroalbumina Bovina/administração & dosagem , Administração Cutânea , Animais , Bovinos , Feminino , Camundongos Endogâmicos BALB C , Agulhas , Proteínas/administração & dosagem , Proteínas/farmacocinética , Soroalbumina Bovina/farmacocinética , Pele/metabolismo , Absorção Cutânea , Suínos , Adesivo Transdérmico
19.
Cancer Chemother Pharmacol ; 81(6): 991-998, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603014

RESUMO

PURPOSE: Effective treatment of patients with locally advanced pancreatic cancer is a significant unmet clinical need. One major hurdle that exists is inadequate drug delivery due to the desmoplastic stroma and poor vascularization that is characteristic of pancreatic cancer. The local iontophoretic delivery of chemotherapies provides a novel way of improving treatment. With the growing practice of highly toxic combination therapies in the treatment of pancreatic cancer, the use of iontophoresis for local delivery can potentiate the anti-cancer effects of these therapies while sparing unwanted toxicity. The objective of this study was to investigate the impact of formulation on the electro-transport of the FOLFIRINOX regimen for the development of a new treatment for pancreatic cancer. METHODS: Three formulations of the FOLFIRINOX regimen (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) were generated at a fixed pH of 6.0 and were referred to as formulation A (single drug solution with all four drugs combined), formulation B (two drug solutions with two drugs per solution), and formulation C (four individual drug solutions). Anodic iontophoresis of the three different formulations was evaluated in orthotopic patient-derived xenografts of pancreatic cancer. RESULTS: Iontophoretic transport of the FOLFIRINOX drugs was characterized according to organ exposure after a single device treatment in vivo. We report that the co-iontophoresis of two drug solutions, leucovorin + oxaliplatin and 5-fluorouracil + irinotecan, resulted in the highest levels of cytotoxic drugs in the tumor compared to drugs delivered individually or combined into one solution. There was no significant difference in plasma, pancreas, kidney, and liver exposure to the cytotoxic drugs delivered by the three different formulations. In addition, we found that reducing the duration of iontophoretic treatment from 10 to 5 min per solution resulted in a significant decrease in drug concentrations. CONCLUSIONS: Underlying the difference in drug transport of the formulations was electrolyte concentrations, which includes both active and inactive components. Electrolyte concentrations can hinder or improve drug electro-transport. Overall, balancing electrolyte concentration is needed for optimal electro-transport.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Iontoforese , Leucovorina/administração & dosagem , Compostos Organometálicos/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Transporte Biológico , Combinação de Medicamentos , Eletrólitos/metabolismo , Humanos , Irinotecano , Camundongos , Oxaliplatina , Neoplasias Pancreáticas/patologia , Fatores de Tempo , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Control Release ; 278: 9-23, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29596874

RESUMO

Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Preparações de Ação Retardada , Dexametasona/administração & dosagem , Dexametasona/análogos & derivados , Dexametasona/química , Docetaxel/administração & dosagem , Docetaxel/química , Liberação Controlada de Fármacos , Poliésteres/química , Polietilenoglicóis/química , Medicina de Precisão/métodos , Rodaminas/administração & dosagem , Rodaminas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...