Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 7350, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513473

RESUMO

The Octodon degus is a South American rodent that is receiving increased attention as a potential model of aging and sporadic late-onset Alzheimer's disease (AD). Impairments in spatial memory tasks in Octodon degus have been reported in relation to either advanced AD-like disease or hippocampal lesion, opening the way to investigate how the function of hippocampal networks affects behavior across AD stages. However, no characterization of hippocampal electrophysiology exists in this species. Here we describe in young, healthy specimens the activity of neurons and local field potential rhythms during spatial navigation tasks with and without objects. Our findings show similarities between the Octodon degus and laboratory rodents. First, place cells with characteristics similar to those found in rats and mice exist in the CA1 subfield of the Octodon degus. Second, the introduction of objects elicits novelty-related exploration and an increase in activity of CA1 cells, with location specific and unspecific components. Third, oscillations of the local field potential are organized according to their spectral content into bands similar to those found in laboratory rodents. These results suggest a common framework of underlying mechanisms, opening the way to future studies of hippocampal dysfunction in this species associated to aging and disease.


Assuntos
Doença de Alzheimer , Octodon , Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos , Ratos
3.
Brain ; 145(1): 76-82, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34196695

RESUMO

Fragile X syndrome is the most common inherited intellectual disability and mono-genetic cause of autism spectrum disorder. It is a neurodevelopmental condition occurring due to a CGG trinucleotide expansion in the FMR1 gene. Polymorphisms and variants in large-conductance calcium-activated potassium channels are increasingly linked to intellectual disability and loss of FMR protein causes reduced large-conductance calcium-activated potassium channel activity leading to abnormalities in synapse function. Using the cannabinoid-like large-conductance calcium-activated potassium channel activator VSN16R we rescued behavioural deficits such as repetitive behaviour, hippocampal dependent tests of daily living, hyperactivity and memory in a mouse model of fragile X syndrome. VSN16R has been shown to be safe in a phase 1 study in healthy volunteers and in a phase 2 study in patients with multiple sclerosis with high oral bioavailability and no serious adverse effects reported. VSN16R could therefore be directly utilized in a fragile X syndrome clinical study. Moreover, VSN16R showed no evidence of tolerance, which strongly suggests that chronic VSN16R may have great therapeutic value for fragile X syndrome and autism spectrum disorder. This study provides new insight into the pathophysiology of fragile X syndrome and identifies a new pathway for drug intervention for this debilitating disorder.


Assuntos
Transtorno do Espectro Autista , Canabinoides , Síndrome do Cromossomo X Frágil , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Humanos , Camundongos , Fenótipo
4.
Sci Rep ; 11(1): 17150, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433831

RESUMO

Fragile X syndrome (FXS), a disorder of synaptic development and function, is the most prevalent genetic form of intellectual disability and autism spectrum disorder. FXS mouse models display clinically-relevant phenotypes, such as increased anxiety and hyperactivity. Despite their availability, so far advances in drug development have not yielded new treatments. Therefore, testing novel drugs that can ameliorate FXS' cognitive and behavioral impairments is imperative. ANAVEX2-73 (blarcamesine) is a sigma-1 receptor (S1R) agonist with a strong safety record and preliminary efficacy evidence in patients with Alzheimer's disease and Rett syndrome, other synaptic neurodegenerative and neurodevelopmental disorders. S1R's role in calcium homeostasis and mitochondrial function, cellular functions related to synaptic function, makes blarcamesine a potential drug candidate for FXS. Administration of blarcamesine in 2-month-old FXS and wild type mice for 2 weeks led to normalization in two key neurobehavioral phenotypes: open field test (hyperactivity) and contextual fear conditioning (associative learning). Furthermore, there was improvement in marble-burying (anxiety, perseverative behavior). It also restored levels of BDNF, a converging point of many synaptic regulators, in the hippocampus. Positron emission tomography (PET) and ex vivo autoradiographic studies, using the highly selective S1R PET ligand [18F]FTC-146, demonstrated the drug's dose-dependent receptor occupancy. Subsequent analyses also showed a wide but variable brain regional distribution of S1Rs, which was preserved in FXS mice. Altogether, these neurobehavioral, biochemical, and imaging data demonstrates doses that yield measurable receptor occupancy are effective for improving the synaptic and behavioral phenotype in FXS mice. The present findings support the viability of S1R as a therapeutic target in FXS, and the clinical potential of blarcamesine in FXS and other neurodevelopmental disorders.


Assuntos
Síndrome do Cromossomo X Frágil/tratamento farmacológico , Furanos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Furanos/farmacocinética , Furanos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fenótipo , Ligação Proteica , Receptores sigma/metabolismo , Receptor Sigma-1
5.
Sci Rep ; 10(1): 18058, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093534

RESUMO

Fragile X syndrome (FXS), an X-chromosome linked intellectual disability, is the leading monogenetic cause of autism spectrum disorder (ASD), a neurodevelopmental condition that currently has no specific drug treatment. Building upon the demonstrated therapeutic effects on spatial memory of bryostatin-1, a relatively specific activator of protein kinase C (PKC)ε, (also of PKCα) on impaired synaptic plasticity/maturation and spatial learning and memory in FXS mice, we investigated whether bryostatin-1 might affect the autistic phenotypes and other behaviors, including open field activity, activities of daily living (nesting and marble burying), at the effective therapeutic dose for spatial memory deficits. Further evaluation included other non-spatial learning and memory tasks. Interestingly, a short period of treatment (5 weeks) only produced very limited or no therapeutic effects on the autistic and cognitive phenotypes in the Fmr1 KO2 mice, while a longer treatment (13 weeks) with the same dose of bryostatin-1 effectively rescued the autistic and non-spatial learning deficit cognitive phenotypes. It is possible that longer-term treatment would result in further improvement in these fragile X phenotypes. This effect is clearly different from other treatment strategies tested to date, in that the drug shows little acute effect, but strong long-term effects. It also shows no evidence of tolerance, which has been a problem with other drug classes (mGluR5 antagonists, GABA-A and -B agonists). The results strongly suggest that, at appropriate dosing and therapeutic period, chronic bryostatin-1 may have great therapeutic value for both ASD and FXS.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Briostatinas/administração & dosagem , Briostatinas/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/terapia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Animais , Comportamento Animal , Briostatinas/farmacologia , Aprendizagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteína Quinase C/metabolismo , Memória Espacial
6.
PLoS One ; 14(8): e0220720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412065

RESUMO

Although monosodium glutamate (MSG)-induced neurotoxicity has been recognized for decades, the potential similarities of the MSG model to Alzheimer's disease (AD)-type neuropathology have only recently been investigated. MSG-treated mice were examined behaviourally and histologically in relation to some features of AD. Four-week old mice received 5 subcutaneous MSG (2 g/kg) injections on alternate days, or saline. At age 10-12 weeks, they were given a battery of behavioural tests for species-typical behaviours and working memory. The mice were killed at 12 weeks and the brains excised. Accumulation of hyperphosphorylated tau protein was assessed in cortical and hippocampal neurons by immunohistochemistry, and in cerebral cortical homogenates. A 78% increase in cortical concentrations of phosphorylated tau protein was observed in the MSG mice. Intracellular hyperphosphorylated tau immunostaining was observed diffusely in the cortex and hippocampus, together with cortical atrophic neurons, extensive vacuolation and dysmorphic neuropil suggestive of spongiform neurodegeneration. Nest-building was significantly impaired, and spontaneous T-maze alternation was reduced, suggesting defective short-term working memory. Subcutaneous MSG treatment also induced a 56% reduction in exploratory head dips in a holeboard (P = 0.009), and a non-significant tendency for decreased burrowing behaviour (P = 0.085). These effects occurred in the absence of MSG-induced obesity or gross locomotor deficits. The findings point to subcutaneous MSG administration in early life as a cause of tau pathology and compromised species-typical behaviour in rodents. Determining whether MSG can be useful in modelling AD requires further studies of longer duration and full behavioural characterization.


Assuntos
Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Glutamato de Sódio/farmacologia , Proteínas tau/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação
7.
Front Behav Neurosci ; 13: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293404

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.

9.
Pharmacol Ther ; 188: 36-44, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29514054

RESUMO

Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disease. Despite decades of research, no disease modifying therapy is available and a change of research objectives and/or development of novel research tools may be required. Much AD research has been based on experimental models using animals with a short lifespan that have been extensively genetically manipulated and do not represent the full spectrum of late-onset AD, which make up the majority of cases. The aetiology of AD is heterogeneous and involves multiple factors associated with the late-onset of the disease like disturbances in brain insulin, oxidative stress, neuroinflammation, metabolic syndrome, retinal degeneration and sleep disturbances which are all progressive abnormalities that could account for many molecular, biochemical and histopathological lesions found in brain from patients dying from AD. This review is based on the long-lived rodent Octodon degus (degu) which is a small diurnal rodent native to South America that can spontaneously develop cognitive decline with concomitant phospho-tau, ß-amyloid pathology and neuroinflammation in brain. In addition, the degu can also develop several other conditions like type 2 diabetes, macular and retinal degeneration and atherosclerosis, conditions that are often associated with aging and are often comorbid with AD. Long-lived animals like the degu may provide a more realistic model to study late onset AD.


Assuntos
Doença de Alzheimer/veterinária , Modelos Animais de Doenças , Octodon , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Animais , Aterosclerose/veterinária , Diabetes Mellitus Tipo 2/veterinária , Descoberta de Drogas , Humanos , Inflamação/etiologia , Metabolismo dos Lipídeos , Melatonina/fisiologia , Estresse Oxidativo , Degeneração Retiniana/veterinária
11.
FASEB J ; 30(12): 4021-4032, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528626

RESUMO

Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.


Assuntos
Cognição/fisiologia , Dieta , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Cetonas/administração & dosagem , Animais , Colesterol/sangue , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Insulina/metabolismo , Masculino , Ratos Wistar , Triglicerídeos/sangue
12.
Curr Alzheimer Res ; 12(4): 314-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25817252

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. Octodon degus, a South American rodent, has been found to spontaneously develop neuropathological signs of AD, including amyloid-ß (Aß) and tau deposits, as well as a decline in cognition with age. Firstly, the present work introduces a novel behavioral assessment for O. degus - the burrowing test - which appears to be a useful tool for detecting neurodegeneration in the O. degus model for AD. Such characterization has potentially wide-ranging implications, because many of these changes in species-typical behaviors are reminiscent of the impairments in activities of daily living (ADL), so characteristic of human AD. Furthermore, the present work characterizes the AD-like neuropathology in O. degus from a gene expression point of view, revealing a number of previously unreported AD biomarkers, which are found in human AD: amyloid precursor protein (APP), apolipoprotein E (ApoE), oxidative stress-related genes from the NFE2L2 and PPAR pathway, as well as pro-inflammatory cytokines and complement proteins, in agreement with the known link between neurodegeneration and neuroinflammation. In summary, the present results confirm a natural neuropathology in O. degus with similar characteristics to AD at behavioral, cellular and molecular levels. These characteristics put O. degus in a singular position as a natural rodent model for research into AD pathogenesis and therapeutics against AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Atividade Motora/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Octodon
13.
Neuromolecular Med ; 17(1): 71-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613838

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, and many agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. In the present work, a novel pharmacological approach for FXS is investigated. NNZ-2566, a synthetic analog of a naturally occurring neurotrophic peptide derived from insulin-like growth factor-1 (IGF-1), was administered to fmr1 knockout mice correcting learning and memory deficits, abnormal hyperactivity and social interaction, normalizing aberrant dendritic spine density, overactive ERK and Akt signaling, and macroorchidism. Altogether, our results indicate a unique disease-modifying potential for NNZ-2566 in FXS. Most importantly, the present data implicate the IGF-1 molecular pathway in the pathogenesis of FXS. A clinical trial is under way to ascertain whether these findings translate into clinical effects in FXS patients.


Assuntos
Síndrome do Cromossomo X Frágil/tratamento farmacológico , Fator de Crescimento Insulin-Like I/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Animais , Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Condicionamento Clássico/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Avaliação Pré-Clínica de Medicamentos , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Relações Interpessoais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Comportamento de Nidação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/anormalidades
14.
J Vis Exp ; (76)2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23851333

RESUMO

The plus-maze was derived from the early work of Montgomery. He observed that rats tended to avoid the open arms of a maze, preferring the enclosed ones. Handley, Mithani and File et al. performed the first studies on the plus-maze design we use today, and in 1987 Lister published a design for use with mice. Time spent on, and entries into, the open arms are an index of anxiety; the lower these indices, the more anxious the mouse is. Alternatively, a mouse that spends most of its time in the closed arms is classed as anxious. One of the problems of the plus-maze is that, while time spent on, and entries into, the open arms is a fairly unambiguous measure of anxiety, time in the central area is more difficult to interpret, although time spent here has been classified as "decision making". In many tests central area time is a considerable part of the total test time. Shepherd et al. produced an ingenious design to eliminate the central area, which they called the "zero maze". However, although used by several groups, it has never been as widely adopted as the plus-maze. In the present article I describe a modification of the plus-maze design that not only eliminates the central area but also incorporates elements from other anxiety tests, such as the light-dark box and emergence tests. It is a linear series of four alleys, each having increasing anxiogenic properties. It has given similar results to the plus-maze in general. Although it may not be more sensitive than the plus-maze (more data is needed before a firm conclusion can be reached on this point), it provides a useful confirmation of plus-maze results which would be useful when, for example, only a single example of a mutant mouse was available, as, for example, in ENU-based mutagenesis programs.


Assuntos
Ansiedade/diagnóstico , Aprendizagem em Labirinto , Animais , Comportamento Animal , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos
15.
J Vis Exp ; (76)2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23770614

RESUMO

When Richard Morris devised his water maze in 1981(7), most behavioral work was done in rats. However, the greater understanding of mouse genetics led to the mouse becoming increasingly important. But researchers found that some strains of mutant mice were prone to problems like passively floating or diving when they were tested in the Morris water maze(11). This was unsurprising considering their natural habitat; rats swim naturally (classically, the "sewer rat"), whereas mice evolved in the dry areas of central Asia. To overcome these problems, it was considered whether shallow water would be a sufficient stimulus to provide escape motivation for mice. This would also avoid the problems of drying the small creatures with a towel and then putting them in a heated recovery chamber to avoid hypothermia, which is a much more serious problem than with rats; the large ratio of surface area to volume of a mouse makes it particularly vulnerable to rapid heat loss. Another consideration was whether a more natural escape strategy could be used, to facilitate learning. Since animals that fall into water and swim away from the safety of the shore are unlikely to pass on their genes, animals have evolved a natural tendency to swim to the edge of a body of water. The Morris water maze, however, requires them to swim to a hidden platform towards the center of the maze - exactly opposite to their evolved behavior. Therefore the paddling maze should incorporate escape to the edge of the apparatus. This feature, coupled with the use of relatively non-aversive shallow water, embodies the "Refinement" aspect of the "3 Rs" of Russell and Burch(8). Various types of maze design were tried; the common feature was that the water was always shallow (2 cm deep) and escape was via a tube piercing the transparent wall of the apparatus. Other tubes ("false exits") were also placed around the walls but these were blocked off. From the inside of the maze all false exits and the single true exit looked the same. Currently a dodecagonal (12-sided) maze is in use in Oxford, with 12 true/false exits set in the corners. In a recent development a transparent paddling Y-maze has been tested successfully.


Assuntos
Aprendizagem em Labirinto/fisiologia , Psicologia Experimental/instrumentação , Natação/fisiologia , Animais , Camundongos , Estresse Psicológico/prevenção & controle , Natação/psicologia
16.
J Vis Exp ; (76)2013 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770643

RESUMO

Kondziela devised the inverted screen test and published it in 1964. It is a test of muscle strength using all four limbs. Most normal mice easily score maximum on this task; it is a quick but insensitive gross screen, and the weights test described in this article will provide a finer measure of muscular strength. There are also several strain gauge-based pieces of apparatus available commercially that will provide more graded data than the inverted screen test, but their cost may put them beyond the reach of many laboratories which do not specialize in strength testing. Hence in 2000 a cheap and simple apparatus was devised by the author. It consists of a series of chain links of increasing length, attached to a "fur collector" a ball of fine wire mesh sold for preventing limescale build up in hard water areas. An accidental observation revealed that mice could grip these very tightly, so they proved ideal as a grip point for a weight-lifting apparatus. A common fault with commercial strength meters is that the bar or other grip feature is not thin enough for mice to exert a maximum grip. As a general rule, the thinner the wire or bar, the better a mouse can grip with its small claws. This is a pure test of strength, although as for any test motivational factors could potentially play a role. The use of scale collectors, however, seems to minimize motivational problems as the motivation appears to be very high for most normal young adult mice.


Assuntos
Músculo Esquelético/fisiologia , Levantamento de Peso , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
J Vis Exp ; (75): e2609, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23748408

RESUMO

Mice are increasingly being used in behavioral neuroscience, largely replacing rats as the behaviorist's animal of choice. Before aspects of behavior such as emotionality or cognition can be assessed, however, it is vital to determine whether the motor capabilities of e.g. a mutant or lesioned mouse allow such an assessment. Performance on a maze task requiring strength and coordination, such as the Morris water maze, might well be impaired in a mouse by motor, rather than cognitive, impairments, so it is essential to selectively dissect the latter from the former. For example, sensorimotor impairments caused by NMDA antagonists have been shown to impair water maze performance(2). Motor coordination has traditionally been assessed in mice and rats by the rotarod test, in which the animal is placed on a horizontal rod that rotates about its long axis; the animal must walk forwards to remain upright and not fall off. Both set speed and accelerating versions of the rotarod are available. The other three tests described in this article (horizontal bar, static rods and parallel bars) all measure coordination on static apparatus. The horizontal bar also requires strength for adequate performance, particularly of the forelimbs as the mouse initially grips the bar just with the front paws. Adult rats do not perform well on tests such as the static rods and parallel bars (personal observations); they appear less well coordinated than mice. I have only tested male rats, however, and male mice seem generally less well coordinated than females. Mice appear to have a higher strength:weight ratio than rats; the Latin name, Mus musculus, seems entirely appropriate. The rotarod, the variations of the foot fault test(12) or the Catwalk (Noldus)(15) apparatus are generally used to assess motor coordination in rats.


Assuntos
Camundongos/fisiologia , Atividade Motora/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Masculino , Teste de Desempenho do Rota-Rod , Fatores Sexuais
18.
Behav Brain Res ; 233(2): 458-73, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22652393

RESUMO

Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by a hemizygous deletion of around 28 genes on the long arm of chromosome 7 (7q11.23), characterized by a unique spectrum of behavioral impairments, including mental retardation, deficits in visuospatial constructive cognition, hypersociability, anxiety and simple phobias. Physical characteristics include dysmorphic faces, short stature, oculomotor deficits, gross and fine coordination impairments, diminished control of balance and mild extrapyramidal signs as well as gait abnormalities resembling gait hypokinesia. Genes near the distal deletion breakpoint appear to contribute most to the WBS cognitive and behavioral profile and include the GTF family of transcription factors: GTF2I, GTF2IRD1, GTF2IRD2. We have previously shown that heterozygous deletions of GTF2IRD1 in humans and homozygous deletion in mice contributes to craniofacial abnormalities. Here we show an important role of this gene in motor coordination and anxiety ascertained from extensive behavioral mouse phenotyping. Gtf2ird1 null mice showed lower body weight, decreased spontaneous and circadian locomotor activity, diminished motor coordination and strength, gait abnormalities, increased anxiety and an elevated endocrinological response to stress. Gtf2ird1 heterozygous mice displayed lower body weight and decreased circadian activity, but only minor motor coordination and anxiety-related behavioral dysfunctions. Our study strongly supports a role for GTF2IRD1 in the motoric and anxiety-related abnormalities seen in Williams-Beuren syndrome, and suggests basal ganglia and potentially cerebellar abnormalities in Gtf2ird1 mice.


Assuntos
Ansiedade/etiologia , Hipocinesia/etiologia , Transtornos dos Movimentos/etiologia , Proteínas Musculares/deficiência , Proteínas Nucleares/deficiência , Transativadores/deficiência , Síndrome de Williams/complicações , Síndrome de Williams/genética , Análise de Variância , Animais , Ansiedade/genética , Gânglios da Base/anormalidades , Gânglios da Base/patologia , Peso Corporal , Ritmo Circadiano/genética , Corticosterona/sangue , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/genética , Asseio Animal/fisiologia , Hipertireoxinemia/etiologia , Hipertireoxinemia/genética , Hipocinesia/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Transtornos dos Movimentos/genética , Fenótipo , Desempenho Psicomotor/fisiologia , Caracteres Sexuais , Síndrome de Williams/patologia
19.
Hippocampus ; 22(7): 1553-66, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22161993

RESUMO

Spatial properties of stimuli are sometimes encoded even when incidental to the demands of a particular learning task. Incidental encoding of spatial information may interfere with learning by (i) causing a failure to generalize learning between trials in which a cue is presented in different spatial locations and (ii) adding common spatial features to stimuli that predict different outcomes. Hippocampal lesions have been found to facilitate acquisition of certain tasks. This facilitation may occur because hippocampal lesions impair incidental encoding of spatial information that interferes with learning. To test this prediction mice with lesions of the hippocampus were trained on appetitive simple simultaneous discrimination tasks using inserts in the goal arms of a T-maze. It was found that hippocampal lesioned mice were facilitated at learning the discriminations, but they were sensitive to changes in spatial information in a manner that was similar to control mice. In a second experiment it was found that both control and hippocampal lesioned mice showed equivalent incidental encoding of egocentric spatial properties of the inserts, but both groups did not encode the allocentric information. These results demonstrate that mice show incidental encoding of egocentric spatial information that decreases the ability to solve simultaneous discrimination tasks. The normal egocentric spatial encoding in hippocampal lesioned mice contradicts theories of hippocampal function that suggest that the hippocampus is necessary for incidental learning per se, or is required for modulating stimulus representations based on the relevancy of information. The facilitated learning suggests that the hippocampal lesions can enhance learning of the same qualitative information as acquired by control mice.


Assuntos
Aprendizagem por Discriminação/fisiologia , Hipocampo/lesões , Percepção Espacial/fisiologia , Animais , Discriminação Psicológica , Feminino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
20.
Neurobiol Aging ; 33(3): 603-616.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20471138

RESUMO

Delirium is an acute, severe neuropsychiatric syndrome, characterized by cognitive deficits, that is highly prevalent in aging and dementia and is frequently precipitated by peripheral infections. Delirium is poorly understood and the lack of biologically relevant animal models has limited basic research. Here we hypothesized that synaptic loss and accompanying microglial priming during chronic neurodegeneration in the ME7 mouse model of prion disease predisposes these animals to acute dysfunction in the region of prior pathology upon systemic inflammatory activation. Lipopolysaccharide (LPS; 100 µg/kg) induced acute and transient working memory deficits in ME7 animals on a novel T-maze task, but did not do so in normal animals. LPS-treated ME7 animals showed heightened and prolonged transcription of inflammatory mediators in the central nervous system (CNS), compared with LPS-treated normal animals, despite having equivalent levels of circulating cytokines. The demonstration that prior synaptic loss and microglial priming are predisposing factors for acute cognitive impairments induced by systemic inflammation suggests an important animal model with which to study aspects of delirium during dementia.


Assuntos
Transtornos da Memória/patologia , Memória de Curto Prazo/fisiologia , Doença Aguda , Animais , Delírio/patologia , Delírio/fisiopatologia , Demência/patologia , Demência/fisiopatologia , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/patologia , Mediadores da Inflamação/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...