Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Emerg Med ; 64(6): 696-708, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37438023

RESUMO

BACKGROUND: Yearly, more than 20,000 children experience a cardiac arrest. High-quality pediatric cardiopulmonary resuscitation (CPR) is generally challenging for community hospital teams, where pediatric cardiac arrest is infrequent. Current feedback systems are insufficient. Therefore, we developed an augmented reality (AR) CPR feedback system for use in many settings. OBJECTIVE: We aimed to evaluate whether AR-CPR improves chest compression (CC) performance in non-pediatric-specialized community emergency departments (EDs). METHODS: We performed an unblinded, randomized, crossover simulation-based study. A convenience sample of community ED nonpediatric nurses and technicians were included. Each participant performed three 2-min cycles of CC during a simulated pediatric cardiac arrest. Participants were randomized to use AR-CPR in one of three CC cycles. Afterward, participants participated in a qualitative interview to inquire about their experience with AR-CPR. RESULTS: Of 36 participants, 18 were randomized to AR-CPR in cycle 2 (group A) and 18 were randomized to AR-CPR in cycle 3 (group B). When using AR-CPR, 87-90% (SD 12-13%) of all CCs were in goal range, analyzed as 1-min intervals, compared with 18-21% (SD 30-33%) without feedback (p < 0.001). Analysis of qualitative themes revealed that AR-CPR may be usable without a device orientation, be effective at cognitive offloading, and reduce anxiety around and enhance confidence in the CC delivered. CONCLUSIONS: The novel CPR feedback system, AR-CPR, significantly changed the CC performance in community hospital non-pediatric-specialized general EDs from 18-21% to 87-90% of CC epochs at goal. This study offers preliminary evidence suggesting AR-CPR improves CC quality in community hospital settings.


Assuntos
Realidade Aumentada , Reanimação Cardiopulmonar , Parada Cardíaca , Criança , Humanos , Projetos Piloto , Retroalimentação , Parada Cardíaca/terapia , Serviço Hospitalar de Emergência
2.
Resusc Plus ; 11: 100273, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35844631

RESUMO

Aim: More than 20,000 children experience a cardiac arrest event each year in the United States. Most children do not survive. High-quality cardiopulmonary resuscitation (CPR) has been associated with improved outcomes yet adherence to guidelines is poor. We developed and tested an augmented reality head mounted display chest compression (CC) feedback system (AR-CPR) designed to provide real-time CC feedback and guidance. Methods: We conducted an unblinded randomized crossover simulation-based study to determine whether AR-CPR changes a user's CC performance. A convenience sample of healthcare providers who perform CC on children were included. Subjects performed three two-minute cycles of CC during a simulated 18-minute paediatric cardiac arrest. Subjects were randomized to utilize AR-CPR in the second or third CC cycle. After, subjects participated in a qualitative portion to inquire about their experience with AR-CPR and offer criticisms and suggestions for future development. Results: There were 34 subjects recruited. Sixteen subjects were randomly assigned to have AR-CPR in cycle two (Group A) and 18 subjects were randomized to have AR-CPR in cycle three (Group B). There were no differences between groups CC performance in cycle one (baseline). In cycle two, subjects in Group A had 73% (SD 18%) perfect CC epochs compared to 17% (SD 26%) in Group B (p < 0.001). Overall, subjects enjoyed using AR-CPR and felt it improved their CC performance. Conclusion: This novel AR-CPR feedback system showed significant CC performance change closer to CC guidelines. Numerous hardware, software, and user interface improvements were made during this pilot study.

3.
Curr Infect Dis Rep ; 7(4): 292-296, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15963331

RESUMO

West Nile virus (WNV) is a small RNA virus. It was first isolated in the blood of a febrile woman in the West Nile district of Uganda in 1937. Although WNV has caused human disease in Africa and Europe since its identification, the first documented human infections occurred in the United States in 1999. Wild birds are the reservoir for WNV, and most transmission to humans occurs after the bite of an infected mosquito. In humans, 80% of infections are asymptomatic and nearly 20% cause a mild self-limiting illness called WNV fever. Less than 1% will develop central nervous system (CNS) infection, which manifests as meningitis, encephalitis, or acute flaccid paralysis. The case fatality rate for CNS infection is approximately 15%. Human vaccine is not available. Personal mosquito protection remains the best prevention, and treatment is supportive.

5.
Curr Infect Dis Rep ; 4(4): 273-275, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12126601
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...