Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 130(36): 11945-52, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18698778

RESUMO

We have previously shown sugar-assisted ligation (SAL) to be a useful method for the convergent construction of glycopeptides. However to date SAL has only been carried out on systems where the thiol auxiliary is attached to a monosaccharide. For SAL to be truly applicable to the construction of fully elaborated glycopeptides and glycoproteins, it must be possible to carry out the reaction when the thiol auxiliary is attached to more elaborate sugars, as these are frequently what are observed in nature. Here we examine the effects of glycosylation at C-3, C-4, and C-6 of the C-2 auxiliary-containing glycan. Model glycopeptides where synthesized chemoenzymatically and reacted with peptide thioesters used in our previous work. These studies reveal that SAL is sensitive to extended glycosylation on the auxiliary-containing sugar. While it is possible to carry out SAL with extended glycosylation at C-4 and C-6, the presence of glycosylation at C-3 prevents the ligation from occurring. Additionally, with glycosylation at C-4 the ligation efficiency is affected by the identity of the N-terminal AA, while the nature of the C-terminal residue of the peptide thioester does not appear to affect ligation efficiency. These studies provide useful guidelines in deciding when it is appropriate to use SAL in the synthesis of complex glycopeptides and glycoproteins and how to choose ligation junctions for optimal yield.


Assuntos
Glicopeptídeos/síntese química , Oligossacarídeos/química , Acetilgalactosamina/química , Acetilglucosamina/química , Aminoácidos/síntese química , Aminoácidos/química , Glicosilação , Glicosiltransferases/química , Polissacarídeos/química , Compostos de Sulfidrila/química
3.
J Am Chem Soc ; 129(47): 14811-7, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17985886

RESUMO

A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with kcat/KMvalues of 33, 75, and 20 M-1 s-1, respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.


Assuntos
Ciclitóis/química , Ciclitóis/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Iminas/química , Aldeídos/química , Aminas/química , Azidas/química , Catálise , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Cinética , Estrutura Molecular
4.
Chem Res Toxicol ; 18(7): 1098-107, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16022502

RESUMO

The solution structure of the N1-[1-hydroxy-3-buten-2(R)-yl]-2'-deoxyinosine adduct arising from the alkylation of adenine N1 by butadiene epoxide (BDO), followed by deamination to deoxyinosine, was determined in the oligodeoxynucleotide 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained the BDO adduct at the second position of codon 61 of the human N-ras protooncogene (underlined) and was named the ras61 R-N1-BDO-(61,2) adduct. 1H NMR revealed a weak C5 H1' to X6 H8 nuclear Overhauser effects (NOE), followed by an intense X6 H8 to X6 H1' NOE. Simultaneously, the X6 H8 to X6 H3' NOE was weak. The resonances arising from the T16 and T17 imino protons were not observed. 1H NOEs between the butadiene moiety and the DNA positioned the adduct in the major groove. Structural refinement based upon a total of 394 NOE-derived distance restraints and 151 torsion angle restraints yielded a structure in which the modified deoxyinosine was in the syn conformation about the glycosyl bond, with a glycosyl bond angle of 83 degrees , and T17, the complementary nucleotide, was stacked into the helix but not hydrogen bonded with the adducted inosine. The refined structure provides a plausible hypothesis as to why these N1 deoxyinosine adducts strongly code for the incorporation of dCTP during trans lesion DNA replication, irrespective of stereochemistry, both in Escherichia coli [Rodriguez, D. A., Kowalczyk, A., Ward, J. B. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2001) Environ. Mol. Mutagen. 38, 292-296] and in mammalian cells [Kanuri, M., Nechev, L. N., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580]. Rotation of the N1 deoxyinosine adduct into the syn conformation may facilitate incorporation of dCTP via Hoogsteen type templating with deoxyinosine, generating A to G mutations. However, conformational differences between the R- and the S-N1-BDO-(61,2) adducts, involving the positioning of the butenyl moiety in the major groove of DNA, suggest that adduct stereochemistry plays a secondary role in modulating the biological response to these adducts.


Assuntos
Butadienos/química , Hidrogênio/química , Inosina/análogos & derivados , Oxigênio/química , Alquilação , DNA/química , Glicosilação , Inosina/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Prótons , Estereoisomerismo
5.
Biochemistry ; 44(30): 10081-92, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042385

RESUMO

The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].


Assuntos
Alquilantes/química , Butadienos/química , Butileno Glicóis/química , Códon/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Compostos de Epóxi/química , Genes ras/efeitos dos fármacos , Pareamento de Bases/efeitos dos fármacos , Butadienos/farmacologia , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/farmacologia , Humanos , Mutagênicos/química , Ressonância Magnética Nuclear Biomolecular , Ácidos Nucleicos Heteroduplexes/química , Oligodesoxirribonucleotídeos/química , Prótons
6.
Biochemistry ; 44(9): 3327-37, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15736943

RESUMO

The solution structure of the N1-(1-hydroxy-3-buten-2(S)-yl)-2'-deoxyinosine adduct arising from the alkylation of adenine N1 by butadiene epoxide (BDO), followed by deamination to deoxyinosine, was determined, in the oligodeoxynucleotide d(CGGACXAGAAG).d(CTTCTCGTCCG). This oligodeoxynucleotide contained the BDO adduct at the second position of codon 61 of the human N-ras protooncogene, and was named the ras61 S-N1-BDO-(61,2) adduct. (1)H NMR revealed a weak C(5) H1' to X(6) H8 NOE, followed by an intense X(6) H8 to X(6) H1' NOE. Simultaneously, the X(6) H8 to X(6) H3' NOE was weak. The resonance arising from the T(17) imino proton was not observed. (1)H NOEs between the butadiene moiety and the DNA positioned the adduct in the major groove. Structural refinement based upon a total of 364 NOE-derived distance restraints yielded a structure in which the modified deoxyinosine was in the high syn conformation about the glycosyl bond, and T(17), the complementary nucleotide, was stacked into the helix, but not hydrogen bonded with the adducted inosine. The refined structure provided a plausible hypothesis as to why this N1 deoxyinosine adduct strongly coded for the incorporation of dCTP during trans lesion DNA replication, both in Escherichia coli [Rodriguez, D. A., Kowalczyk, A., Ward, J. B. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2001) Environ. Mol. Mutagen. 38, 292-296], and in mammalian cells [Kanuri, M., Nechev, L. N., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580]. Rotation of the N1 deoxyinosine adduct into the high syn conformation may facilitate incorporation of dCTP via Hoogsteen-type templating with deoxyinosine, thus generating A-to-G mutations.


Assuntos
Butadienos/química , Códon/química , Códon/genética , Adutos de DNA/química , Compostos de Epóxi/química , Genes ras/genética , Inosina/análogos & derivados , Inosina/química , Oligodesoxirribonucleotídeos/química , Alquilantes/química , Alquilantes/metabolismo , Sequência de Bases , Butadienos/metabolismo , Códon/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Compostos de Epóxi/metabolismo , Humanos , Inosina/genética , Inosina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Prótons , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...