Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5703, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709739

RESUMO

Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.


Assuntos
Malária Vivax , Plasmodium , Humanos , Plasmodium vivax/genética , Triptofano , Antígenos de Protozoários/genética , Sulfoglicoesfingolipídeos
2.
PLoS Biol ; 21(7): e3001815, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459343

RESUMO

During the last decade, the detection of neurotropic astroviruses has increased dramatically. The MLB genogroup of astroviruses represents a genetically distinct group of zoonotic astroviruses associated with gastroenteritis and severe neurological complications in young children, the immunocompromised, and the elderly. Using different virus evolution approaches, we identified dispensable regions in the 3' end of the capsid-coding region responsible for attenuation of MLB astroviruses in susceptible cell lines. To create recombinant viruses with identified deletions, MLB reverse genetics (RG) and replicon systems were developed. Recombinant truncated MLB viruses resulted in imbalanced RNA synthesis and strong attenuation in iPSC-derived neuronal cultures confirming the location of neurotropism determinants. This approach can be used for the development of vaccine candidates using attenuated astroviruses that infect humans, livestock animals, and poultry.


Assuntos
Infecções por Astroviridae , Gastroenterite , Mamastrovirus , Criança , Animais , Humanos , Pré-Escolar , Idoso , Mamastrovirus/genética , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/diagnóstico , Proteínas do Capsídeo/genética , Capsídeo , Filogenia
3.
Proc Natl Acad Sci U S A ; 120(14): e2218823120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996106

RESUMO

Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.


Assuntos
Doenças Desmielinizantes , Sulfoglicoesfingolipídeos , Humanos , Glicoesfingolipídeos/metabolismo , Proteínas de Transporte/metabolismo , Fatores de Crescimento Neural/metabolismo , Bainha de Mielina/metabolismo , Moléculas de Adesão Celular/metabolismo , Doenças Desmielinizantes/patologia
4.
J Biol Chem ; 299(1): 102750, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436563

RESUMO

Type IIB receptor protein tyrosine phosphatases are cell surface transmembrane proteins that engage in cell adhesion via their extracellular domains (ECDs) and cell signaling via their cytoplasmic phosphatase domains. The ECDs of type IIB receptor protein tyrosine phosphatases form stable, homophilic, and trans interactions between adjacent cell membranes. Previous work has demonstrated how one family member, PTPRM, forms head-to-tail homodimers. However, as the interface was composed of residues conserved across the family, the determinants of homophilic specificity remain unknown. Here, we have solved the X-ray crystal structure of the membrane-distal N-terminal domains of PTPRK that form a head-to-tail dimer consistent with intermembrane adhesion. Comparison with the PTPRM structure demonstrates interdomain conformational differences that may define homophilic specificity. Using small-angle X-ray scattering, we determined the solution structures of the full-length ECDs of PTPRM and PTPRK, identifying that both are rigid extended molecules that differ in their overall long-range conformation. Furthermore, we identified one residue, W351, within the interaction interface that differs between PTPRM and PTPRK and showed that mutation to glycine, the equivalent residue in PTPRM, abolishes PTPRK dimer formation in vitro. This comparison of two members of the receptor tyrosine phosphatase family suggests that homophilic specificity is driven by a combination of shape complementarity and specific but limited sequence differences.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Humanos , Adesão Celular , Linhagem Celular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
5.
J Biol Chem ; 298(11): 102589, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243114

RESUMO

Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Serina-Treonina Quinases , Ceramidas/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Esfingolipídeos/metabolismo , Transporte Biológico/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Complexo de Golgi/metabolismo
6.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264065

RESUMO

Protein tyrosine phosphatase receptor-type kappa (PTPRK) is a transmembrane receptor that links extracellular homophilic interactions to intracellular catalytic activity. Previously we showed that PTPRK promotes cell-cell adhesion by selectively dephosphorylating several cell junction regulators including the protein Afadin (Fearnley et al, 2019). Here, we demonstrate that Afadin is recruited for dephosphorylation by directly binding to the PTPRK D2 pseudophosphatase domain. We mapped this interaction to a putative coiled coil (CC) domain in Afadin that is separated by more than 100 amino acids from the substrate pTyr residue. We identify the residues that define PTP specificity, explaining how Afadin is selectively dephosphorylated by PTPRK yet not by the closely related receptor tyrosine phosphatase PTPRM. Our work demonstrates that PTP substrate specificity can be determined by protein-protein interactions distal to the active site. This explains how PTPRK and other PTPs achieve substrate specificity despite a lack of specific sequence context at the substrate pTyr. Furthermore, by demonstrating that these interactions are phosphorylation-independent and mediated via binding to a non-catalytic domain, we highlight how receptor PTPs could function as intracellular scaffolds in addition to catalyzing protein dephosphorylation.


Assuntos
Proteínas dos Microfilamentos , Proteínas Tirosina Fosfatases , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Especificidade por Substrato
7.
J Gen Virol ; 103(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020582

RESUMO

The morphogenesis of vaccinia virus (VACV, family Poxviridae), the smallpox vaccine, is a complex process involving multiple distinct cellular membranes and resulting in multiple different forms of infectious virion. Efficient release of enveloped virions, which promote systemic spread of infection within hosts, requires the VACV protein E2 but the molecular basis of E2 function remains unclear and E2 lacks sequence homology to any well-characterised family of proteins. We solved the crystal structure of VACV E2 to 2.3 Å resolution, revealing that it comprises two domains with novel folds: an N-terminal annular (ring) domain and a C-terminal globular (head) domain. The C-terminal head domain displays weak structural homology with cellular (pseudo)kinases but lacks conserved surface residues or kinase features, suggesting that it is not enzymatically active, and possesses a large surface basic patch that might interact with phosphoinositide lipid headgroups. Recent deep learning methods have revolutionised our ability to predict the three-dimensional structures of proteins from primary sequence alone. VACV E2 is an exemplar 'difficult' viral protein target for structure prediction, being comprised of multiple novel domains and lacking sequence homologues outside Poxviridae. AlphaFold2 nonetheless succeeds in predicting the structures of the head and ring domains with high and moderate accuracy, respectively, allowing accurate inference of multiple structural properties. The advent of highly accurate virus structure prediction marks a step-change in structural virology and beckons a new era of structurally-informed molecular virology.


Assuntos
Poxviridae/metabolismo , Vaccinia virus/química , Vaccinia virus/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Vaccinia virus/genética , Proteínas Virais/genética
9.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398933

RESUMO

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimologia , Humanos , Monoéster Fosfórico Hidrolases/genética , Células Vero , Proteínas Virais/genética , Liberação de Vírus
10.
ACS Med Chem Lett ; 12(1): 56-59, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488964

RESUMO

Competitive inhibitors of galactocerebrosidase (GALC) could be candidates for pharmacological chaperone therapy of patients with Krabbe disease. The known and selective nortropane-type iminosugar galacto-noeurostegine has been found to competitively inhibit GALC with K i = 7 µM at pH 4.6, which is 330-fold more potent than the analogous deoxynoeurostegine. It was shown through X-ray protein crystallography that galacto-noeurostegine binds to the active site of GALC in its bicyclic form.

11.
Contact (Thousand Oaks) ; 4: 251525642110523, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37143956

RESUMO

Saposins are lipid transfer proteins required for the degradation of sphingolipids in the lysosome. These small proteins bind lipids by transitioning from a closed, monomeric state to an open conformation exposing a hydrophobic surface that binds and shields hydrophobic lipid tails from the aqueous environment. Saposins form a range of multimeric assemblies to encompass these bound lipids and present them to hydrolases in the lysosome. This lipid-binding property of human saposin A has been exploited to form lipoprotein nanodiscs suitable for structural studies of membrane proteins. Here we present the crystal structure of a unique tetrameric assembly of murine saposin A produced serendipitously, following modifications of published protocols for making lipoprotein nanodiscs. The structure of this new saposin oligomer highlights the diversity of tertiary arrangement that can be adopted by these important lipid transfer proteins.

12.
Nat Commun ; 11(1): 3219, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591542

RESUMO

The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.


Assuntos
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Linhagem Celular , Dissulfetos/metabolismo , Estabilidade Enzimática , Humanos , Modelos Moleculares , Oxirredução , Ligação Proteica , Domínios Proteicos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Especificidade por Substrato
13.
Elife ; 92020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32292164

RESUMO

The seminal description of the cellular restriction factor APOBEC3G and its antagonism by HIV-1 Vif has underpinned two decades of research on the host-virus interaction. We recently reported that HIV-1 Vif is also able to degrade the PPP2R5 family of regulatory subunits of key cellular phosphatase PP2A (PPP2R5A-E; Greenwood et al., 2016; Naamati et al., 2019). We now identify amino acid polymorphisms at positions 31 and 128 of HIV-1 Vif which selectively regulate the degradation of PPP2R5 family proteins. These residues covary across HIV-1 viruses in vivo, favouring depletion of PPP2R5A-E. Through analysis of point mutants and naturally occurring Vif variants, we further show that degradation of PPP2R5 family subunits is both necessary and sufficient for Vif-dependent G2/M cell cycle arrest. Antagonism of PP2A by HIV-1 Vif is therefore independent of APOBEC3 family proteins, and regulates cell cycle progression in HIV-infected cells.


Assuntos
Pontos de Checagem do Ciclo Celular , HIV-1/genética , Proteína Fosfatase 2/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/fisiologia , Desaminases APOBEC/metabolismo , Citometria de Fluxo , HIV-1/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação Puntual/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
14.
Wellcome Open Res ; 4: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667358

RESUMO

Background: Lipid antigens are presented on the surface of cells by the CD1 family of glycoproteins, which have structural and functional similarity to MHC class I molecules. The hydrophobic lipid antigens are embedded in membranes and inaccessible to the lumenal lipid-binding domain of CD1 molecules. Therefore, CD1 molecules require lipid transfer proteins for lipid loading and editing. CD1d is loaded with lipids in late endocytic compartments, and lipid transfer proteins of the saposin family have been shown to play a crucial role in this process. However, the mechanism by which saposins facilitate lipid binding to CD1 molecules is not known and is thought to involve transient interactions between protein components to ensure CD1-lipid complexes can be efficiently trafficked to the plasma membrane for antigen presentation. Of the four saposin proteins, the importance of Saposin B (SapB) for loading of CD1d is the most well-characterised. However, a direct interaction between CD1d and SapB has yet to be described. Methods: In order to determine how SapB might load lipids onto CD1d, we used purified, recombinant CD1d and SapB and carried out a series of highly sensitive binding assays to monitor direct interactions. We performed equilibrium binding analysis, chemical cross-linking and co-crystallisation experiments, under a range of different conditions. Results: We could not demonstrate a direct interaction between SapB and CD1d using any of these binding assays. Conclusions: This work establishes comprehensively that the role of SapB in lipid loading does not involve direct binding to CD1d. We discuss the implication of this for our understanding of lipid loading of CD1d and propose several factors that may influence this process.

16.
Elife ; 82019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30924770

RESUMO

Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cateninas/metabolismo , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/enzimologia , Proteínas dos Microfilamentos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Fosforilação , delta Catenina
17.
Elife ; 72018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30484775

RESUMO

Tapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules; however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediated peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing on MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulinas/imunologia , Proteínas de Membrana/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno/imunologia , Sítios de Ligação/genética , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Células HeLa , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Leucina/química , Leucina/imunologia , Leucina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
18.
Nat Commun ; 9(1): 151, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323104

RESUMO

Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase ß-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded.


Assuntos
Galactosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Saposinas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica/genética , Estrutura Terciária de Proteína , Saposinas/genética
19.
Nat Commun ; 8: 15786, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593992

RESUMO

Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Mucopolissacaridose II/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Glicoproteínas/genética , Humanos , Modelos Moleculares , Mucopolissacaridose II/etiologia , Mutação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Sulfatos/metabolismo
20.
Elife ; 62017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425917

RESUMO

Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.


Assuntos
Apresentação de Antígeno , Glucosiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Humanos , Mapeamento de Interação de Proteínas , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA