Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Endosc Int Open ; 12(3): E402-E412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504742

RESUMO

Background and study aims The aim of this study was to assess the effect of an educational video on the quality of bowel preparation of patients from a UK population attending for their first colonoscopy. Patients and methods A prospective, endoscopist-blinded trial with 1:1 allocation was performed. Patients referred for their first colonoscopy were recruited between February 2019 and December 2019. All participants were prescribed Moviprep and received the trial site's standard written bowel preparation instructions, with the intervention group also receiving a bespoke educational video. Adequacy of bowel preparation (defined as a Boston Bowel Preparation Scale of ≥2 in each segment of the bowel) and polyp detection rates (PDRs) were compared. Fisher's chi squared test was utilized with P <0.05 as the threshold for significance. Results A total of 509 participants completed the trial from six centers; 251 were randomized to the intervention group. The mean age was 57 years and 52.3% were female. The primary endpoint was met with an adequacy rate of 216 of 251 (86.1%) in the intervention group, compared with 205 of 259 (79.1%) in the control group ( P <0.05, odds ratio [OR] 1.626, 95% CI 1.017-2.614). The PDR was significantly higher in the intervention group (39% vs 30%, OR 1.51, 95% CI 1.04-2.19, P <0.05). Conclusions An educational video leads to improved bowel preparation for patients attending for their first colonoscopy, and is also associated with greater detection of polyps. Widespread adoption of an educational video incurs minimal investment, but would reduce the number of inadequate procedures, missed pathology, and the cost that both these incur.

2.
Brain ; 147(4): 1206-1215, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38085047

RESUMO

Low serum levels of 25-hydroxyvitamin D [25(OH)D] and low sunlight exposure are known risk factors for the development of multiple sclerosis. Add-on vitamin D supplementation trials in established multiple sclerosis have been inconclusive. The effects of vitamin D supplementation to prevent multiple sclerosis is unknown. We aimed to test the hypothesis that oral vitamin D3 supplementation in high-risk clinically isolated syndrome (abnormal MRI, at least three T2 brain and/or spinal cord lesions), delays time to conversion to definite multiple sclerosis, that the therapeutic effect is dose-dependent, and that all doses are safe and well tolerated. We conducted a double-blind trial in Australia and New Zealand. Eligible participants were randomized 1:1:1:1 to placebo, 1000, 5000 or 10 000 international units (IU) of oral vitamin D3 daily within each study centre (n = 23) and followed for up to 48 weeks. Between 2013 and 2021, we enrolled 204 participants. Brain MRI scans were performed at baseline, 24 and 48 weeks. The main study outcome was conversion to clinically definite multiple sclerosis based on the 2010 McDonald criteria defined as either a clinical relapse or new brain MRI T2 lesion development. We included 199 cases in the intention-to-treat analysis based on assigned dose. Of these, 116 converted to multiple sclerosis by 48 weeks (58%). Compared to placebo, the hazard ratios (95% confidence interval) for conversion were 1000 IU 0.87 (0.50, 1.50); 5000 IU 1.37 (0.82, 2.29); and 10 000 IU 1.28 (0.76, 2.14). In an adjusted model including age, sex, latitude, study centre and baseline symptom number, clinically isolated syndrome onset site, presence of infratentorial lesions and use of steroids, the hazard ratios (versus placebo) were 1000 IU 0.80 (0.45, 1.44); 5000 IU 1.36 (0.78, 2.38); and 10 000 IU 1.07 (0.62, 1.85). Vitamin D3 supplementation was safe and well tolerated. We did not demonstrate reduction in multiple sclerosis disease activity by vitamin D3 supplementation after a high-risk clinically isolated syndrome.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Colecalciferol/uso terapêutico , Colecalciferol/efeitos adversos , Calcifediol , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/tratamento farmacológico , Método Duplo-Cego
3.
Med J Aust ; 219(11): 542-548, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37992722

RESUMO

OBJECTIVES: To assess the population health impact of high temperatures on workplace health and safety by estimating the burden of heat-attributable occupational injury in Australia. STUDY DESIGN, SETTING: Retrospective observational study; estimation of burden of occupational injury in Australia attributable to high temperatures during 2014-19, based on Safe Work Australia (work-related traumatic injury fatalities and workers' compensation databases) and Australian Institute of Health and Welfare data (Australian Burden of Disease Study and National Hospital Morbidity databases), and a meta-analysis of climate zone-specific risk data. MAIN OUTCOME MEASURE: Burden of heat-attributable occupational injuries as disability-adjusted life years (DALYs), comprising the numbers of years of life lived with disability (YLDs) and years of life lost (YLLs), nationally, by Köppen-Geiger climate zone, and by state and territory. RESULTS: During 2014-19, an estimated 42 884 years of healthy life were lost to occupational injury, comprising 39 485 YLLs (92.1%) and 3399 YLDs (7.9%), at a rate of 0.80 DALYs per 1000 workers per year. A total of 967 occupational injury-related DALYs were attributable to heat (2.3% of occupational injury-related DALYs), comprising 890 YLLs (92%) and 77 YLDs (8%). By climate zone, the heat-attributable proportion was largest in the tropical Am (12 DALYs; 3.5%) and Aw zones (34 DALYs; 3.5%); by state and territory, the proportion was largest in New South Wales and Queensland (each 2.9%), which also included the largest numbers of heat-attributable occupational injury-related DALYs (NSW: 379 DALYs, 39% of national total; Queensland: 308 DALYs; 32%). CONCLUSION: An estimated 2.3% of the occupational injury burden in Australia is attributable to high ambient temperatures. To prevent this burden increasing with global warming, adaptive measures and industry-based policies are needed to safeguard workplace health and safety, particularly in heat-exposed industries, such as agriculture, transport, and construction.


Assuntos
Expectativa de Vida , Traumatismos Ocupacionais , Humanos , Austrália/epidemiologia , Carga Global da Doença , Estudos Observacionais como Assunto , Traumatismos Ocupacionais/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco , Temperatura
4.
Lancet Reg Health West Pac ; 41: 100916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867620

RESUMO

Background: The dual impacts of a warming climate and population ageing lead to an increasing kidney disease prevalence, highlighting the importance of quantifying the burden of kidney disease (BoKD) attributable to high temperature, yet studies on this subject are limited. The study aims to quantify the BoKD attributable to high temperatures in Australia across all states and territories, and project future BoKD under climatic, population and adaptation scenarios. Methods: Data on disability-adjusted-life-years (DALYs) due to kidney disease, including years of life lost (YLL), and years lived with disability (YLD), were collected during 2003-2018 (baseline) across all states and territories in Australia. The temperature-response association was estimated using a meta-regression model. Future temperature projections were calculated using eight downscaled climate models to estimate changes in attributable BoKD centred around 2030s and 2050s, under two greenhouse gas emissions scenarios (RCP4.5 and RCP8.5), while considering changes in population size and age structure, and human adaptation to climate change. Findings: Over the baseline (2003-2018), high-temperature contributed to 2.7% (Standard Deviation: 0.4%) of the observed BoKD in Australia. The future population attributable fraction and the attributable BoKD, projected using RCP4.5 and RCP8.5, showed a gradually increasing trend when assuming no human adaptation. Future projections were most strongly influenced by the population change, with the high temperature-related BoKD increasing by 18.4-67.4% compared to the baseline under constant population and by 100.2-291.2% when accounting for changes in population size and age structure. However, when human adaptation was adopted (from no to partial to full), the high temperature-related BoKD became smaller. Interpretation: It is expected that increasing high temperature exposure will substantially contribute to higher BoKD across Australia, underscoring the urgent need for public health interventions to mitigate the negative health impacts of a warming climate on BoKD. Funding: Australian Research Council Discovery Program.

5.
Environ Res ; 236(Pt 2): 116852, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558113

RESUMO

INTRODUCTION: The costs of global warming are substantial. These include expenses from occupational illnesses and injuries (OIIs), which have been associated with increases during heatwaves. This study estimated retrospective and projected future heatwave-attributable OIIs and their costs in Australia. MATERIALS AND METHODS: Climate and workers' compensation claims data were extracted from seven Australian capital cities representing OIIs from July 2005 to June 2018. Heatwaves were defined using the Excess Heat Factor. OIIs and associated costs were estimated separately per city and pooled to derive national estimates. Results were projected to 2030 (2016-2045) and 2050 (2036-2065). RESULTS: The risk of OIIs and associated costs increased during heatwaves, with the risk increasing during severe and particularly extreme heatwaves. Of all OIIs, 0.13% (95% empirical confidence interval [eCI]: 0.11-0.16%) were heatwave-attributable, equivalent to 120 (95%eCI:70-181) OIIs annually. 0.25% of costs were heatwave-attributable (95%eCI: 0.18-0.34%), equal to $AU4.3 (95%eCI: 1.4-7.4) million annually. Estimates of heatwave-attributable OIIs by 2050, under Representative Concentration Pathway [RCP]4.5 and RCP8.5, were 0.17% (95%eCI: 0.10-0.27%) and 0.23% (95%eCI: 0.13-0.37%), respectively. National costs estimates for 2030 under RCP4.5 and RCP8.5 were 0.13% (95%eCI: 0.27-0.46%) and 0.04% (95%eCI: 0.66-0.60), respectively. These estimates for extreme heatwaves were 0.04% (95%eCI: 0.02-0.06%) and 0.04% (95%eCI: 0.01-0.07), respectively. Cost-AFs in 2050 were, under RCP4.5, 0.127% (95%eCI: 0.27-0.46) for all heatwaves and 0.04% (95%eCI: 0.01-0.09%) for extreme heatwaves. Attributable fractions were approximately similar to baseline when assuming theoretical climate adaptation. DISCUSSION: Heatwaves represent notable and preventable portions of preventable OIIs and economic burden. OIIs are likely to increase in the future, and costs during extreme heatwaves in 2030. Workplace and public health policies aimed at heat adaptation can reduce heat-attributable morbidity and costs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37444126

RESUMO

The aim of this study was to estimate the effects of climate on childhood diarrhoea hospitalisations across six administrative divisions in Bangladesh and to provide scientific evidence for local health authorities for disease control and prevention. Fortnightly hospital admissions (August/2013-June/2017) for diarrhoea in children under five years of age, and fortnightly average maximum temperature, relative humidity and rainfall recordings for six administrative divisions were modelled using negative binomial regression with distributed lag linear terms. Flexible spline functions were used to adjust models for seasonality and long-term trends. During the study period, 25,385 diarrhoea cases were hospitalised. Overall, each 1 °C rise in maximum temperature increased diarrhoea hospitalisations by 4.6% (IRR = 1.046; 95% CI, 1.007-1.088) after adjusting for seasonality and long-term trends in the unlagged model. Using lagged effects of maximum temperature, and adjusting for relative humidity and rainfall for each of the six administrative divisions, the relationship between maximum temperature and diarrhoea hospitalisations varied between divisions, with positive and negative effect estimates. The temperature-diarrhoea association may be confounded by seasonality and long-term trends. Our findings are a reminder that the effects of climate change may be heterogeneous across regions, and that tailored diarrhoea prevention strategies need to consider region-specific recommendations rather than relying on generic guidelines.


Assuntos
Mudança Climática , Diarreia , Humanos , Criança , Pré-Escolar , Bangladesh/epidemiologia , Diarreia/epidemiologia , Hospitalização , Temperatura , Análise de Regressão
7.
Eur J Neurol ; 30(9): 2752-2760, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306550

RESUMO

BACKGROUND AND PURPOSE: Epstein-Barr virus (EBV) is implicated in multiple sclerosis (MS) risk; evidence for other herpesviruses is inconsistent. Here, we test blood markers of infection with human herpesvirus 6 (HHV-6), varicella zoster virus (VZV), and cytomegalovirus (CMV) as risk factors for a first clinical diagnosis of central nervous system demyelination (FCD) in the context of markers of EBV infection. METHODS: In the Ausimmune case-control study, cases had an FCD, and population controls were matched on age, sex, and study region. We quantified HHV-6- and VZV-DNA load in whole blood and HHV-6, VZV, and CMV antibodies in serum. Conditional logistic regression tested associations with FCD risk, adjusting for Epstein-Barr nuclear antigen (EBNA) IgG, EBV-DNA load, and other covariates. RESULTS: In 204 FCD cases and 215 matched controls, only HHV-6-DNA load (positive vs. negative) was associated with FCD risk (adjusted odds ratio = 2.20, 95% confidence interval = 1.08-4.46, p = 0.03). Only EBNA IgG and HHV-6-DNA positivity were retained in a predictive model of FCD risk; the combination had a stronger association than either alone. CMV-specific IgG concentration modified the association between an MS risk-related human leucocyte antigen gene and FCD risk. Six cases and one control had very high HHV-6-DNA load (>1.0 × 106 copies/mL). CONCLUSIONS: HHV-6-DNA positivity and high load (possibly due to inherited HHV-6 chromosomal integration) were associated with increased FCD risk, particularly in association with markers of EBV infection. With growing interest in prevention/management of MS through EBV-related pathways, there should be additional consideration of the role of HHV-6 infection.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 6 , Esclerose Múltipla , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Estudos de Casos e Controles , Herpesvirus Humano 6/genética , Herpesvirus Humano 3/genética , Imunoglobulina G , Sistema Nervoso Central
8.
EBioMedicine ; 91: 104582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37088034

RESUMO

BACKGROUND: Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS: A systematic literature search was conducted in PubMed, Scopus, Embase, and Web of Science from January 1990 to September 20, 2022. We included peer reviewed original observational studies using ecological time series, case crossover, or case series study designs reporting the association of high temperatures and heatwave with dengue and comparing risks over different exposures or time periods. Studies classified as case reports, clinical trials, non-human studies, conference abstracts, editorials, reviews, books, posters, commentaries; and studies that examined only seasonal effects were excluded. Effect estimates were extracted from published literature. A random effects meta-analysis was performed to pool the relative risks (RRs) of dengue infection per 1 °C increase in temperature, and further subgroup analyses were also conducted. The quality and strength of evidence were evaluated following the Navigation Guide systematic review methodology framework. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS: The study selection process yielded 6367 studies. A total of 106 studies covering more than four million dengue cases fulfilled the inclusion criteria; of these, 54 studies were eligible for meta-analysis. The overall pooled estimate showed a 13% increase in risk of dengue infection (RR = 1.13; 95% confidence interval (CI): 1.11-1.16, I2 = 98.0%) for each 1 °C increase in high temperatures. Subgroup analyses by climate zones suggested greater effects of temperature in tropical monsoon climate zone (RR = 1.29, 95% CI: 1.11-1.51) and humid subtropical climate zone (RR = 1.20, 95% CI: 1.15-1.25). Heatwave events showed association with an increased risk of dengue infection (RR = 1.08; 95% CI: 0.95-1.23, I2 = 88.9%), despite a wide confidence interval. The overall strength of evidence was found to be "sufficient" for high temperatures but "limited" for heatwaves. Our results showed that high temperatures increased the risk of dengue infection, albeit with varying risks across climate zones and different levels of national income. INTERPRETATION: High temperatures increased the relative risk of dengue infection. Future studies on the association between temperature and dengue infection should consider local and regional climate, socio-demographic and environmental characteristics to explore vulnerability at local and regional levels for tailored prevention. FUNDING: Australian Research Council Discovery Program.


Assuntos
Dengue , Humanos , Temperatura , Austrália , Risco , Dengue/epidemiologia
9.
Int J Epidemiol ; 52(3): 783-795, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36511334

RESUMO

BACKGROUND: With high temperature becoming an increasing health risk due to a changing climate, it is important to quantify the scale of the problem. However, estimating the burden of disease (BoD) attributable to high temperature can be challenging due to differences in risk patterns across geographical regions and data accessibility issues. METHODS: We present a methodological framework that uses Köppen-Geiger climate zones to refine exposure levels and quantifies the difference between the burden observed due to high temperatures and what would have been observed if the population had been exposed to the theoretical minimum risk exposure distribution (TMRED). Our proposed method aligned with the Australian Burden of Disease Study and included two parts: (i) estimation of the population attributable fractions (PAF); and then (ii) estimation of the BoD attributable to high temperature. We use suicide and self-inflicted injuries in Australia as an example, with most frequent temperatures (MFTs) as the minimum risk exposure threshold (TMRED). RESULTS: Our proposed framework to estimate the attributable BoD accounts for the importance of geographical variations of risk estimates between climate zones, and can be modified and adapted to other diseases and contexts that may be affected by high temperatures. CONCLUSIONS: As the heat-related BoD may continue to increase in the future, this method is useful in estimating burdens across climate zones. This work may have important implications for preventive health measures, by enhancing the reproducibility and transparency of BoD research.


Assuntos
Temperatura Baixa , Temperatura Alta , Humanos , Temperatura , Reprodutibilidade dos Testes , Austrália/epidemiologia , Efeitos Psicossociais da Doença , Mudança Climática
10.
BMJ Open ; 12(11): e066851, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414301

RESUMO

OBJECTIVES: We aim to establish daily risk estimates of the relationships between grass, tree and weed pollen and asthma health outcomes. DESIGN: Time series regression analysis of exposure and health outcomes using interaction by month to determine risk estimates all year round. SETTING: Metropolitan Adelaide, South Australia. PARTICIPANTS: Health outcomes for asthma are based on 15 years of hospital admissions, 13 years emergency presentations and ambulance callouts. In adults (≥18 years), there were 10 381 hospitalisations, 26 098 emergency department (ED) presentations and 11 799 ambulance callouts and in children (0-17 years), 22 114, 39 813 and 3774, respectively. OUTCOME MEASURES: The cumulative effect of 7 day lags was calculated as the sum of the coefficients and reported as incidence rate ratio (IRR) related to an increase in 10 grains of pollen/m3. RESULTS: In relation to grass pollen, children and adults were disparate in their timing of health effects. Asthma outcomes in children were positively related to grass pollen in May, and for adults in October. Positive associations with weed pollen in children was seen from February to May across all health outcomes. For adults, weed pollen-related health outcomes were restricted to February. Adults were not affected by tree pollen, while children's asthma morbidity was associated with tree pollen in August and September. In children, IRRs ranged from 1.14 (95% CI 1.06 to 1.21) for ED presentations for tree pollen in August to 1.98 (95% CI 1.06 to 3.72) for weed pollen in February. In adults, IRRs ranged from 1.28 (95% CI 1.01 to 1.62) for weed pollen in February to 1.31 (95% CI 1.08 to 1.57) for grass pollen in October. CONCLUSION: Monthly risk assessment indicated that most pollen-related asthma health outcomes in children occur in the colder part of the year, while adults are affected in the warm season. The findings indicate a need for year-round pollen monitoring and related health campaigns to provide effective public health prevention.


Assuntos
Asma , Rinite Alérgica Sazonal , Criança , Adulto , Humanos , Poaceae , Árvores , Austrália do Sul/epidemiologia , Fatores de Tempo , Pólen/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Análise de Regressão , Avaliação de Resultados em Cuidados de Saúde
11.
Artigo em Inglês | MEDLINE | ID: mdl-35955062

RESUMO

This study aimed to estimate respiratory disease hospitalization costs attributable to ambient temperatures and to estimate the future hospitalization costs in Australia. The associations between daily hospitalization costs for respiratory diseases and temperatures in Sydney and Perth over the study period of 2010-2016 were analyzed using distributed non-linear lag models. Future hospitalization costs were estimated based on three predicted climate change scenarios-RCP2.6, RCP4.5 and RCP8.5. The estimated respiratory disease hospitalization costs attributable to ambient temperatures increased from 493.2 million Australian dollars (AUD) in the 2010s to more than AUD 700 million in 2050s in Sydney and from AUD 98.0 million to about AUD 150 million in Perth. The current cold attributable fraction in Sydney (23.7%) and Perth (11.2%) is estimated to decline by the middle of this century to (18.1-20.1%) and (5.1-6.6%), respectively, while the heat-attributable fraction for respiratory disease is expected to gradually increase from 2.6% up to 5.5% in Perth. Limitations of this study should be noted, such as lacking information on individual-level exposures, local air pollution levels, and other behavioral risks, which is common in such ecological studies. Nonetheless, this study found both cold and hot temperatures increased the overall hospitalization costs for respiratory diseases, although the attributable fractions varied. The largest contributor was cold temperatures. While respiratory disease hospitalization costs will increase in the future, climate change may result in a decrease in the cold attributable fraction and an increase in the heat attributable fraction, depending on the location.


Assuntos
Transtornos Respiratórios , Doenças Respiratórias , Austrália/epidemiologia , Mudança Climática , Temperatura Baixa , Hospitalização , Temperatura Alta , Humanos , Mortalidade , Doenças Respiratórias/epidemiologia , Temperatura
12.
Artigo em Inglês | MEDLINE | ID: mdl-35897462

RESUMO

(1) Background: Limited research has suggested that cardiopulmonary health outcomes should be considered in relation to pollen exposure. This study sets out to test the relationship between pollen types (grasses, trees, weeds) and cardiovascular, lower respiratory and COPD health outcomes using 15 years (2003-2017) of data gathered in Adelaide, South Australia; (2) Methods: A time-series analysis by months was conducted using cardiopulmonary data from hospital admissions, emergency presentations and ambulance callouts in relation to daily pollen concentrations in children (0-17) for lower respiratory outcomes and for adults (18+). Incidence rate ratios (IRR) were calculated over lags from 0 to 7 days; (3) Results: IRR increases in cardiovascular outcomes in March, May, and October were related to grass pollen, while increases in July, November, and December were related to tree pollen. IRRs ranged from IRR 1.05 (95% confidence interval (CI) 1.00-1.10) to 1.25 (95% CI 1.12-1.40). COPD increases related to grass pollen occurred only in May. Pollen-related increases were observed for lower respiratory outcomes in adults and in children; (4) Conclusion: Notable increases in pollen-related associations with cardiopulmonary outcomes were not restricted to any one season. Prevention measures for pollen-related health effects should be widened to consider cardiopulmonary outcomes.


Assuntos
Pólen , Doença Pulmonar Obstrutiva Crônica , Adulto , Alérgenos , Criança , Hospitalização , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estações do Ano , Austrália do Sul/epidemiologia
13.
Lancet Planet Health ; 6(6): e484-e495, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709806

RESUMO

BACKGROUND: Heat exposure is an important but underappreciated risk factor contributing to cardiovascular disease. Warming temperatures might therefore pose substantial challenges to population health, especially in a rapidly aging population. To address a potential increase in the burden of cardiovascular disease, a better understanding of the effects of ambient heat on different types of cardiovascular disease and factors contributing to vulnerability is required, especially in the context of climate change. This study reviews the current epidemiological evidence linking heat exposures (both high temperatures and heatwaves) with cardiovascular disease outcomes, including mortality and morbidity. METHODS: In this systematic review and meta-analysis, we searched PubMed, Embase, and Scopus for literature published between Jan 1, 1990, and March 10, 2022, and evaluated the quality of the evidence following the Navigation Guide Criteria. We included original research on independent study populations in which the exposure metric was high temperatures or heatwaves, and observational studies using ecological time series, case crossover, or case series study designs comparing risks over different exposures or time periods. Reviews, commentaries, grey literature, and studies that examined only seasonal effects without explicitly considering temperature were excluded. The risk estimates were derived from included articles and if insufficient data were available we contacted the authors to provide clarification. We did a random-effects meta-analysis to pool the relative risk (RR) of the association between high temperatures and heatwaves and cardiovascular disease outcomes. The study protocol was registered with PROSPERO (CRD42021232601). FINDINGS: In total, 7360 results were returned from our search of which we included 282 articles in the systematic review, and of which 266 were eligible for the meta-analysis. There was substantial heterogeneity for both mortality (high temperatures: I2=93·6%, p<0·0001; heatwaves: I2=98·9%, p<0·0001) and morbidity (high temperatures: I2=98·8%, p<0·0001; heatwaves: I2=83·5%, p<0·0001). Despite the heterogeneity in environmental conditions and population dynamics among the reviewed studies, results showed that a 1°C increase in temperature was positively associated with cardiovascular disease-related mortality across all considered diagnoses. The overall risk of cardiovascular disease-related mortality increased by 2·1% (RR 1·021 [95%CI 1·020-1·023]), with the highest specific disease risk being for stroke and coronary heart disease. A 1°C temperature rise was also associated with a significant increase in morbidity due to arrhythmias and cardiac arrest and coronary heart disease. Our findings suggest heat exposure leads to elevated risk of morbidity and mortality for women, people 65 years and older, individuals living in tropical climates, and those in countries of lower-middle income. Heatwaves were also significantly associated with a 17% increase in risk of mortality (RR 1·117 [95% CI 1·093-1·141]), and increasing heatwave intensity with an increasing risk (RR 1·067 [95% CI 1·056-1·078] for low intensity, 1·088 [1·058-1·119] for middle intensity, and 1·189 [1·109-1·269] for high intensity settings). INTERPRETATION: This review strengthens the evidence on the increase in cardiovascular disease risk due to ambient heat exposures in different climate zones. The widespread prevalence of exposure to hot temperatures, in conjunction with an increase in the proportion of older people in the population, might result in a rise in poor cardiovascular disease health outcomes associated with a warming climate. Evidence-based prevention measures are needed to attenuate peaks in cardiovascular events during hot spells, thereby lowering the worldwide total heat-related burden of cardiovascular disease-related morbidity and death. FUNDING: Australian Research Council Discovery Program.


Assuntos
Doenças Cardiovasculares , Idoso , Austrália , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Mudança Climática , Feminino , Temperatura Alta , Humanos , Fatores de Risco
14.
Occup Environ Med ; 79(6): 421-426, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35379702

RESUMO

BACKGROUND: Exposure to extreme temperatures is associated with increased emergency department (ED) presentations. The resulting burden on health service costs and the potential impact of climate change is largely unknown. This study examines the temperature-EDs/cost relationships in Adelaide, South Australia and how this may be impacted by increasing temperatures. METHODS: A time series analysis using a distributed lag nonlinear model was used to explore the exposure-response relationships. The net-attributable, cold-attributable and heat-attributable ED presentations for temperature-related diseases and costs were calculated for the baseline (2014-2017) and future periods (2034-2037 and 2054-2057) under three climate representative concentration pathways (RCPs). RESULTS: The baseline heat-attributable ED presentations were estimated to be 3600 (95% empirical CI (eCI) 700 to 6500) with associated cost of $A4.7 million (95% eCI 1.8 to 7.5). Heat-attributable ED presentations and costs were projected to increase during 2030s and 2050s with no change in the cold-attributable burden. Under RCP8.5 and population growth, the increase in heat-attributable burden would be 1.9% (95% eCI 0.8% to 3.0%) for ED presentations and 2.5% (95% eCI 1.3% to 3.7%) for ED costs during 2030s. Under the same conditions, the heat effect is expected to increase by 3.7% (95% eCI 1.7% to 5.6%) for ED presentations and 5.0% (95% eCI 2.6% to 7.1%) for ED costs during 2050s. CONCLUSIONS: Projected climate change is likely to increase heat-attributable emergency presentations and the associated costs in Adelaide. Planning health service resources to meet these changes will be necessary as part of broader risk mitigation strategies and public health adaptation actions.


Assuntos
Mudança Climática , Temperatura Alta , Serviço Hospitalar de Emergência , Custos de Cuidados de Saúde , Humanos , Austrália do Sul/epidemiologia
15.
Acta Trop ; 231: 106454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35405101

RESUMO

Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.


Assuntos
Infecções por Alphavirus , Ross River virus , Infecções por Alphavirus/epidemiologia , Clima , Meio Ambiente , Humanos , Temperatura
16.
J Allergy Clin Immunol ; 150(1): 140-145.e1, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35077775

RESUMO

BACKGROUND: Food anaphylaxis admission rates have increased steadily in recent decades. Global food allergy prevention guidelines recommending early introduction of allergenic foods were introduced in 2015-2016. Australian guidelines to not delay the introduction of allergenic foods were introduced in 2007-2008. OBJECTIVE: Our aim was to examine whether introduction of Australian guidelines (2007-2008) and global allergy prevention guidelines (2015-2016) were associated with reductions in food anaphylaxis admission rates. METHODS: We compared food anaphylaxis admission rates across 3 periods: 1998-1999 to 2006-2007, 2007-2008 to 2014-2015, and 2015-2016 to 2018-2019. RESULTS: Annual food anaphylaxis admission rates increased 9-fold between 1998-1999 and 2018-2019, from 2.0 per 105 population to 18.2 per 105 population; the highest absolute rates were in those younger than 1 year. When year-on-year rates of change were examined across the 3 time periods, the annual rate of increase slowed after 2007-2008 in those aged 1 to 4 years (17.6%, 6.2%, and 3.9% per year, respectively) and those aged 5 to 9 years (22%, 13.9%, and -2.4%, respectively), and after 2015-2016, in those aged 10 to 14 years (17.5%, 18.0%, and 10.8%, respectively). By contrast, the year-on-year rate of increase accelerated in those younger than 1 year (5.2%, 8.0%, and 18.0%, respectively) and in all age groups older than 15 years. CONCLUSIONS: Although food anaphylaxis continues to increase overall, there is preliminary evidence indicating a slowing in the year-on-year rate of increase among those aged 1 to 4, 5 to 9, and 10 to 14 years, coinciding with introduction of updated infant feeding and allergy prevention guidelines in 2007-2008 and 2015-2016. Changes to the guidelines may have contributed to an attenuated rate of increase in food anaphylaxis in these age groups, as well as to increased rates in those younger than 1 year.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Alérgenos , Anafilaxia/epidemiologia , Anafilaxia/prevenção & controle , Austrália/epidemiologia , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/prevenção & controle , Humanos , Lactente
17.
Sci Total Environ ; 801: 149806, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467930

RESUMO

BACKGROUND: The occurrence or exacerbation of kidney disease has been documented as a growing problem associated with hot weather. The implementation of effective prevention measures requires a better understanding of the risk factors that increase susceptibility. To fill gaps in knowledge, this study reviews the current literature on the effects of heat on kidney-disease outcomes (ICD-10 N00-N39), including morbidity and mortality. METHODS: Databases were systematically searched for relevant literature published between 1990 and 2020 and the quality of evidence evaluated. We performed random effects meta-analysis to calculate the pooled relative risks (RRs) of the association between high temperatures (and heatwaves) and kidney disease outcomes. We further evaluated vulnerability concerning contextual population characteristics. RESULTS: Of 2739 studies identified, 91 were reviewed and 82 of these studies met the criteria for inclusion in a meta-analysis. Findings showed that with a 1 °C increase in temperature, the risk of kidney-related morbidity increased by 1% (RR 1.010; 95% CI: 1.009-1.011), with the greatest risk for urolithiasis. Heatwaves were also associated with increased morbidity with a trend observed with heatwave intensity. During low-intensity heatwaves, there was an increase of 5.9% in morbidity, while during high-intensity heatwaves there was a 7.7% increase. There were greater RRs for males, people aged ≤64 years, and those living in temperate climate zones. Similarly, for every 1 °C temperature increase, there was a 3% (RR 1.031; 95% CI: 1.018-1.045) increase in the risk of kidney-related mortality, which also increased during heatwaves. CONCLUSIONS: High temperatures (and heatwaves) are associated with an elevated risk of kidney disease outcomes, particularly urolithiasis. Preventive measures that may minimize risks in vulnerable individuals during hot spells are discussed.


Assuntos
Temperatura Alta , Nefropatias , Humanos , Raios Infravermelhos , Nefropatias/epidemiologia , Morbidade , Fatores de Risco
18.
Aust N Z J Public Health ; 45(5): 504-505, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33900671

RESUMO

OBJECTIVE: To determine if global warming has changed the balance of summer and winter deaths in Australia. METHODS: Counts of summer and winter cause-specific deaths of subjects aged 55 and over for the years 1968-2018 were entered into a Poisson time-series regression. Analysis was stratified by states and territories of Australia, by sex, age and cause of death (respiratory, cardiovascular, and renal diseases). The warmest and coldest subsets of seasons were compared. RESULTS: Warming over 51 years was associated with a long-term increase in the ratio of summer to winter mortality from 0.73 in the summer of 1969 to 0.83 in the summer of 2018. The increase occurred faster in years that were warmer than average. CONCLUSIONS: Mortality in the warmest and coldest times of the year is converging as annual average temperatures rise. Implications for public health: If climate change continues, deaths in the hottest months will come to dominate the burden of mortality in Australia.


Assuntos
Mudança Climática , Temperatura Alta , Austrália/epidemiologia , Humanos , Estações do Ano , Temperatura
19.
Environ Int ; 153: 106533, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33799230

RESUMO

BACKGROUND: Mental health is an important public health issue globally. A potential link between heat exposure and mental health outcomes has been recognised in the scientific literature; however, the associations between heat exposure (both high ambient temperatures and heatwaves) and mental health-related mortality and morbidity vary between studies and locations. OBJECTIVE: To fill gaps in knowledge, this systematic review aims to summarize the epidemiological evidence and investigate the quantitative effects of high ambient temperatures and heatwaves on mental health-related mortality and morbidity outcomes, while exploring sources of heterogeneity. METHODS: A systematic search of peer-reviewed epidemiological studies on heat exposure and mental health outcomes published between January 1990 and November 2020 was conducted using five databases (PubMed, Embase, Scopus, Web of Science and PsycINFO). We included studies that examined the association between high ambient temperatures and/or heatwaves and mental health-related mortality and morbidity (e.g. hospital admissions and emergency department visits) in the general population. A range of mental health conditions were defined using ICD-10 classifications. We performed random effects meta-analysis to summarize the relative risks (RRs) in mental health outcomes per 1 °C increase in temperature, and under different heatwaves definitions. We further evaluated whether variables such as age, sex, socioeconomic status, and climate zone may explain the observed heterogeneity. RESULTS: The keyword search yielded 4560 citations from which we identified 53 high temperatures/heatwaves studies that comprised over 1.7 million mental health-related mortality and 1.9 million morbidity cases in total. Our findings suggest associations between heat exposures and a range of mental health-related outcomes. Regarding high temperatures, our meta-analysis of study findings showed that for each 1 °C increase in temperature, the mental health-related mortality and morbidity increased with a RR of 1.022 (95%CI: 1.015-1.029) and 1.009 (95%CI: 1.007-1.015), respectively. The greatest mortality risk was attributed to substance-related mental disorders (RR, 1.046; 95%CI: 0.991-1.101), followed by organic mental disorders (RR, 1.033; 95%CI: 1.020-1.046). A 1 °C temperature rise was also associated with a significant increase in morbidity such as mood disorders, organic mental disorders, schizophrenia, neurotic and anxiety disorders. Findings suggest evidence of vulnerability for populations living in tropical and subtropical climate zones, and for people aged more than 65 years. There were significant moderate and high heterogeneities between effect estimates in overall mortality and morbidity categories, respectively. Lower heterogeneity was noted in some subgroups. The magnitude of the effect estimates for heatwaves varied depending on definitions used. The highest effect estimates for mental health-related morbidity was observed when heatwaves were defined as "mean temperature ≥90th percentile for ≥3 days" (RR, 1.753; 95%CI: 0.567-5.421), and a significant effect was also observed when the definition was "mean temperature ≥95th percentile for ≥3 days", with a RR of 1.064 (95%CI: 1.006-1.123). CONCLUSIONS: Our findings support the hypothesis of a positive association between elevated ambient temperatures and/or heatwaves and adverse mental health outcomes. This problem will likely increase with a warming climate, especially in the context of climate change. Further high-quality studies are needed to identify modifying factors of heat impacts.


Assuntos
Mudança Climática , Temperatura Alta , Humanos , Morbidade , Avaliação de Resultados em Cuidados de Saúde , Temperatura
20.
Sci Total Environ ; 773: 145656, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592481

RESUMO

BACKGROUND: A growing number of studies have investigated the effect of increasing temperatures on morbidity and health service use. However, there is a lack of studies investigating the temperature-attributable cost burden. OBJECTIVES: This study examines the relationship of daily mean temperature with hospital admissions, length of hospital stay (LoS), and costs; and estimates the baseline temperature-attributable hospital admissions, and costs and in relation to warmer climate scenarios in Adelaide, South Australia. METHOD: A daily time series analysis using distributed lag non-linear models (DLNM) was used to explore exposure-response relationships and to estimate the aggregated burden of hospital admissions for conditions associated with temperatures (i.e. renal diseases, mental health, diabetes, ischaemic heart diseases and heat-related illnesses) as well as the associated LoS and costs, for the baseline period (2010-2015) and different future climate scenarios in Adelaide, South Australia. RESULTS: During the six-year baseline period, the overall temperature-attributable hospital admissions, LoS, and associated costs were estimated to be 3915 cases (95% empirical confidence interval (eCI): 235, 7295), 99,766 days (95% eCI: 14,484, 168,457), and AU$159 million (95% eCI: 18.8, 269.0), respectively. A climate scenario consistent with RCP8.5 emissions, and including projected demographic change, is estimated to lead to increases in heat-attributable hospital admissions, LoS, and costs of 2.2% (95% eCI: 0.5, 3.9), 8.4% (95% eCI: 1.1, 14.3), and 7.7% (95% eCI: 0.3, 13.3), respectively by mid-century. CONCLUSIONS: There is already a substantial temperature-attributable impact on hospital admissions, LoS, and costs which are estimated to increase due to climate change and an increasing aged population. Unless effective climate and public health interventions are put into action, the costs of treating temperature-related admissions will be high.


Assuntos
Mudança Climática , Temperatura Alta , Idoso , Custos de Cuidados de Saúde , Hospitais , Humanos , Tempo de Internação , Austrália do Sul , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...