Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Radiother Oncol ; : 110320, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740091

RESUMO

BACKGROUND AND PURPOSE: Radiation pneumonitis (RP) is a common side effect of thoracic radiotherapy and often has a long course characterized by acute exacerbations and progression to permanent lung fibrosis. There are no validated biomarkers of prognosis in patients diagnosed with RP. MATERIALS AND METHODS: We analyzed a time course of serum chemokines, cytokines, and other proteins from patients with grade 2+ RP in a randomized clinical trial of a steroid taper plus nintedanib, a multiple tyrosine kinase inhibitor, versus placebo plus a steroid taper for the treatment of RP. Weighted gene correlation network analysis (WGCNA) and univariable zero inflated Poisson models were used to identify groups of correlated analytes and their associations with clinical outcomes. RESULTS: Thirty enrolled patients had biomarker data available, and 17 patients had enough analytes tested for network analysis. WGNCA identified ten analytes, including transforming growth factor beta-1 (TGF-ß1), monocyte chemoattractant protein-1 (MCP-1), and platelet-derived growth factor (PDGF), that in aggregate were correlated with the occurrence of pulmonary exacerbations (p = 0.008), the total number of acute pulmonary exacerbations (p = 0.002), and treatment arm (p = 0.036). By univariable analysis, an increase in rate of change of two components of the RP module were associated with an increased incidence rate of pulmonary exacerbations: interleukin 5 (IL-5, incidence rate ratio (IRR) 1.02, 95% CI 1.01-1.04, p = 0.002), and tumor necrosis factor superfamily 12 (TNFSF12, IRR 1.06, CI 1-1.11, p = 0.036). An increased slope of epidermal growth factor (EGF) was associated with a decreased incidence rate of exacerbations (IRR 0.94, CI 0.89-1, p = 0.036). CONCLUSION: We identified a panel of serum biomarkers that showed association with nintedanib treatment and acute pulmonary exacerbations in patients with RP. A confirmatory study will be needed to validate this panel for use as a prognostic tool in patients with RP.

2.
BJR Artif Intell ; 1(1): ubae004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38476956

RESUMO

Objectives: Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods: This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant. Results: No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively. Conclusions: The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC. Advances in knowledge: First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.

3.
Sci Rep ; 14(1): 6082, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480759

RESUMO

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFkB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/terapia , Redes Reguladoras de Genes , Imunoterapia
4.
J Nucl Med ; 65(4): 520-526, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485270

RESUMO

Radiation pneumonitis (RP) that develops early (i.e., within 3 mo) (RPEarly) after completion of concurrent chemoradiation (cCRT) leads to treatment discontinuation and poorer survival for patients with stage III non-small cell lung cancer. Since no RPEarly risk model exists, we explored whether published RP models and pretreatment 18F-FDG PET/CT-derived features predict RPEarly Methods: One hundred sixty patients with stage III non-small cell lung cancer treated with cCRT and consolidative immunotherapy were analyzed for RPEarly Three published RP models that included the mean lung dose (MLD) and patient characteristics were examined. Pretreatment 18F-FDG PET/CT normal-lung SUV featured included the following: 10th percentile of SUV (SUVP10), 90th percentile of SUV (SUVP90), SUVmax, SUVmean, minimum SUV, and SD. Associations between models/features and RPEarly were assessed using area under the receiver-operating characteristic curve (AUC), P values, and the Hosmer-Lemeshow test (pHL). The cohort was randomly split, with similar RPEarly rates, into a 70%/30% derivation/internal validation subset. Results: Twenty (13%) patients developed RPEarly Predictors for RPEarly were MLD alone (AUC, 0.72; P = 0.02; pHL, 0.87), SUVP10, SUVP90, and SUVmean (AUC, 0.70-0.74; P = 0.003-0.006; pHL, 0.67-0.70). The combined MLD and SUVP90 model generalized in the validation subset and was deemed the final RPEarly model (RPEarly risk = 1/[1+e(- x )]; x = -6.08 + [0.17 × MLD] + [1.63 × SUVP90]). The final model refitted in the 160 patients indicated improvement over the published MLD-alone model (AUC, 0.77 vs. 0.72; P = 0.0001 vs. 0.02; pHL, 0.65 vs. 0.87). Conclusion: Patients at risk for RPEarly can be detected with high certainty by combining the normal lung's MLD and pretreatment 18F-FDG PET/CT SUVP90 This refined model can be used to identify patients at an elevated risk for premature immunotherapy discontinuation due to RPEarly and could allow for interventions to improve treatment outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Pulmão , Imunoterapia , Estudos Retrospectivos
5.
Phys Imaging Radiat Oncol ; 29: 100542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38369989

RESUMO

Background and purpose: Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart. Materials and methods: AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA). Results: AIDA required âˆ¼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (>=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6). Conclusions: Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.

6.
Sci Rep ; 14(1): 488, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177639

RESUMO

Network properties account for the complex relationship between genes, making it easier to identify complex patterns in their interactions. In this work, we leveraged these network properties for dual purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best concordance with histological subtypes, validated against three state-of-the-art methods. Second, to identify molecular targets that would be missed by more conventional methods of analysis, we applied a novel unsupervised method to cluster gene interactomes represented as networks in pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on a discrete notion of curvature. This provides a measure of the functional association among genes in the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we found non-trivial gene associations not previously identified.


Assuntos
Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma de Ewing/patologia , Proteína EWS de Ligação a RNA/metabolismo , Neoplasias de Tecidos Moles/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica c-fli-1/genética , Linhagem Celular Tumoral
7.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090606

RESUMO

Cancer transcriptional patterns exhibit both shared and unique features across diverse cancer types, but whether these patterns are sufficient to characterize the full breadth of tumor phenotype heterogeneity remains an open question. We hypothesized that cancer transcriptional diversity mirrors patterns in normal tissues optimized for distinct functional tasks. Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal tissue patterns and variations across a broad spectrum of malignancies. We show that differential enrichment of these signatures correlates with key tumor characteristics, including overall patient survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we show that in HR+/HER2-breast cancers, metastatic tumors adopt transcriptomic signatures consistent with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue transcriptomic characteristics as a component of both malignant progression and drug response. This quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and could potentially help manage individual patients.

8.
Radiother Oncol ; 190: 110005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972736

RESUMO

PURPOSE: We assessed the association of cardiac radiation dose with cardiac events and survival post-chemoradiation therapy (CRT) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) after adoption of modern radiation therapy (RT) techniques, stricter cardiac dose constraints, and immune checkpoint inhibitor (ICI) consolidation. METHODS AND MATERIALS: This single-institution, multi-site retrospective study included 335 patients with LA-NSCLC treated with definitive, concurrent CRT between October 2017 and December 2021. All patients were evaluated for ICI consolidation. Planning dose constraints included heart mean dose < 20 Gy (<10 Gy if feasible) and heart volume receiving ≥ 50 Gy (V50Gy) < 25 %. Twenty-one dosimetric parameters for three different cardiac structures (heart, left anterior descending coronary artery [LAD], and left ventricle) were extracted. Primary endpoint was any major adverse cardiac event (MACE) post-CRT, defined as acute coronary syndrome, heart failure, coronary revascularization, or cardiac-related death. Secondary endpoints were: grade ≥ 3 cardiac events (per CTCAE v5.0), overall survival (OS), lung cancer-specific mortality (LCSM), and other-cause mortality (OCM). RESULTS: Median age was 68 years, 139 (41 %) had baseline coronary heart disease, and 225 (67 %) received ICI consolidation. Proton therapy was used in 117 (35 %) and intensity-modulated RT in 199 (59 %). Median LAD V15Gy was 1.4 % (IQR 0-22) and median heart mean dose was 8.7 Gy (IQR 4.6-14.4). Median follow-up was 3.3 years. Two-year cumulative incidence of MACE was 9.5 % for all patients and 14.3 % for those with baseline coronary heart disease. Two-year cumulative incidence of grade ≥ 3 cardiac events was 20.4 %. No cardiac dosimetric parameter was associated with an increased risk of MACE or grade ≥ 3 cardiac events. On multivariable analysis, cardiac dose (LAD V15Gy and heart mean dose) was associated with worse OS, driven by an association with LCSM but not OCM. CONCLUSIONS: With modern RT techniques, stricter cardiac dose constraints, and ICI consolidation, cardiac dose was associated with LCSM but not OCM or cardiac events in patients with LA-NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Cardiovasculares , Doença das Coronárias , Neoplasias Pulmonares , Humanos , Idoso , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Doses de Radiação
9.
IEEE Trans Med Imaging ; 43(3): 916-927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874704

RESUMO

Directionally sensitive radiomic features including the histogram of oriented gradient (HOG) have been shown to provide objective and quantitative measures for predicting disease outcomes in multiple cancers. However, radiomic features are sensitive to imaging variabilities including acquisition differences, imaging artifacts and noise, making them impractical for using in the clinic to inform patient care. We treat the problem of extracting robust local directionality features by mapping via optimal transport a given local image patch to an iso-intense patch of its mean. We decompose the transport map into sub-work costs each transporting in different directions. To test our approach, we evaluated the ability of the proposed approach to quantify tumor heterogeneity from magnetic resonance imaging (MRI) scans of brain glioblastoma multiforme, computed tomography (CT) scans of head and neck squamous cell carcinoma as well as longitudinal CT scans in lung cancer patients treated with immunotherapy. By considering the entropy difference of the extracted local directionality within tumor regions, we found that patients with higher entropy in their images, had significantly worse overall survival for all three datasets, which indicates that tumors that have images exhibiting flows in many directions may be more malignant. This may seem to reflect high tumor histologic grade or disorganization. Furthermore, by comparing the changes in entropy longitudinally using two imaging time points, we found patients with reduction in entropy from baseline CT are associated with longer overall survival (hazard ratio = 1.95, 95% confidence interval of 1.4-2.8, p = 1.65e-5). The proposed method provides a robust, training free approach to quantify the local directionality contained in images.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética
10.
Radiother Oncol ; 190: 109983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926331

RESUMO

PURPOSE: Disease progression after definitive stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) occurs in 20-40% of patients. Here, we explored published and novel pre-treatment CT and PET radiomics features to identify patients at risk of progression. MATERIALS/METHODS: Published CT and PET features were identified and explored along with 15 other CT and PET features in 408 consecutively treated early-stage NSCLC patients having CT and PET < 3 months pre-SBRT (training/set-aside validation subsets: n = 286/122). Features were associated with progression-free survival (PFS) using bootstrapped Cox regression (Bonferroni-corrected univariate predictor: p ≤ 0.002) and only non-strongly correlated predictors were retained (|Rs|<0.70) in forward-stepwise multivariate analysis. RESULTS: Tumor diameter and SUVmax were the two most frequently reported features associated with progression/survival (in 6/20 and 10/20 identified studies). These two features and 12 of the 15 additional features (CT: 6; PET: 6) were candidate PFS predictors. A re-fitted model including diameter and SUVmax presented with the best performance (c-index: 0.78; log-rank p-value < 0.0001). A model built with the two best additional features (CTspiculation1 and SUVentropy) had a c-index of 0.75 (log-rank p-value < 0.0001). CONCLUSIONS: A re-fitted pre-treatment model using the two most frequently published features - tumor diameter and SUVmax - successfully stratified early-stage NSCLC patients by PFS after receiving SBRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiômica , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Prognóstico
11.
Adv Radiat Oncol ; 8(6): 101285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047220

RESUMO

Purpose: The use of stereotactic body radiation therapy for ultracentral lung tumors is limited by increased toxicity. We hypothesized that using published normal tissue complication probability (NTCP) and tumor control probability (TCP) models could improve the therapeutic ratio between tumor control and toxicity. A proposed model-based approach was applied to virtually replan early-stage non-small cell lung cancer (NSCLC) tumors. Methods and Materials: The analysis included 63 patients with ultracentral NSCLC tumors treated at our center between 2008 and 2017. Along with current clinical constraints, additional NTCP model-based criteria, including for grade 3+ radiation pneumonitis (RP3+) and grade 2+ esophagitis, were implemented using 4 different fractionation schemes. Scaled dose distributions resulting in the highest TCP without violating constraints were selected (optimal plan [Planopt]). Planopt predictions were compared with the observed local control and toxicities. Results: The observed 2-year local control rate was 72% (95% CI, 57%-88%) compared with 87% (range, 6%-93%) for Planopt TCP. Thirty-nine patients had Planopt with TCP > 80%, and 14 patients had Planopt TCP < 50%. The Planopt NTCPs for RP3+ were reduced by nearly half compared with patients' observed RP3+. The RP3+ NTCP was the most frequent reason for TCP of Planopt < 80% (14/24 patients), followed by grade 2+ esophagitis NTCP (5/24 patients) due to larger tumors (>40 cc vs ≤40 cc; P = .002) or a shorter tumor to esophagus distance (≥5 cm vs <5 cm; P < .001). Conclusions: We demonstrated the potential for model-based prescriptions to yield higher TCP while respecting NTCP for patients with ultracentral NSCLC. Individualizing treatments based on NTCP- and TCP-driven simulations halved the predicted relative to the observed rates of RP3+. Our simulations also identified patients whose TCP could not be improved without violating NTCP due to larger tumors or a near tumor to esophagus proximity.

12.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045365

RESUMO

Melanoma response to immune-modulating therapy remains incompletely characterized at the molecular level. In this study, we assess melanoma immunotherapy response using a multi-scale network approach to identify gene modules with coordinated gene expression in response to treatment. Using gene expression data of melanoma before and after treatment with nivolumab, we modeled gene expression changes in a correlation network and measured a key network geometric property, dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and reveal multi-scale treatment-response gene communities. Analysis identified six distinct gene modules corresponding to sets of genes interacting in response to immunotherapy. One module alone, overlapping with the nuclear factor kappa-B pathway (NFKB), was associated with improved patient survival and a positive clinical response to immunotherapy. This analysis demonstrates the usefulness of dynamic Ollivier-Ricci curvature as a general method for identifying information-sharing gene modules in cancer.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38154510

RESUMO

PURPOSE: Larger tumors are underrepresented in most prospective trials on stereotactic body radiation therapy (SBRT) for inoperable non-small cell lung cancer (NSCLC). We performed this phase 1 trial to specifically study the maximum tolerated dose (MTD) of SBRT for NSCLC >3 cm. METHODS AND MATERIALS: A 3 + 3 dose-escalation design (cohort A) with an expansion cohort at the MTD (cohort B) was used. Patients with inoperable NSCLC >3 cm (T2-4) were eligible. Select ipsilateral hilar and single-station mediastinal nodes were permitted. The initial SBRT dose was 40 Gy in 5 fractions, with planned escalation to 50 and 60 Gy in 5 fractions. Adjuvant chemotherapy was mandatory for cohort A and optional for cohort B, but no patients in cohort B received chemotherapy. The primary endpoint was SBRT-related acute grade (G) 4+ or persistent G3 toxicities (Common Terminology Criteria for Adverse Events version 4.03). Secondary endpoints included local failure (LF), distant metastases, disease progression, and overall survival. RESULTS: The median age was 80 years; tumor size was >3 cm and ≤5 cm in 20 (59%) and >5 cm in 14 patients (41%). In cohort A (n = 9), 3 patients treated to 50 Gy experienced G3 radiation pneumonitis (RP), thus defining the MTD. In the larger dose-expansion cohort B (n = 25), no radiation therapy-related G4+ toxicities and no G3 RP occurred; only 2 patients experienced G2 RP. The 2-year cumulative incidence of LF was 20.2%, distant failure was 34.7%, and disease progression was 54.4%. Two-year overall survival was 53%. A biologically effective dose (BED) <100 Gy was associated with higher LF (P = .006); advanced stage and higher neutrophil/lymphocyte ratio were associated with greater disease progression (both P = .004). CONCLUSIONS: Fifty Gy in 5 fractions is the MTD for SBRT to tumors >3 cm. A higher BED is associated with fewer LFs even in larger tumors. Cohort B appears to have had less toxicity, possibly due to the omission of chemotherapy.

14.
Comput Struct Biotechnol J ; 21: 5601-5608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034400

RESUMO

Lung adenocarcinoma (ADC) is the most common non-small cell lung cancer. Surgical resection is the primary treatment for early-stage lung ADC while lung-sparing surgery is an alternative for non-aggressive cases. Identifying histopathologic subtypes before surgery helps determine the optimal surgical approach. Predominantly solid or micropapillary (MIP) subtypes are aggressive and associated with a higher likelihood of recurrence and metastasis and lower survival rates. This study aims to non-invasively identify these aggressive subtypes using preoperative 18F-FDG PET/CT and diagnostic CT radiomics analysis. We retrospectively studied 119 patients with stage I lung ADC and tumors ≤ 2 cm, where 23 had aggressive subtypes (18 solid and 5 MIPs). Out of 214 radiomic features from the PET/CT and CT scans and 14 clinical parameters, 78 significant features (3 CT and 75 PET features) were identified through univariate analysis and hierarchical clustering with minimized feature collinearity. A combination of Support Vector Machine classifier and Least Absolute Shrinkage and Selection Operator built predictive models. Ten iterations of 10-fold cross-validation (10 ×10-fold CV) evaluated the model. A pair of texture feature (PET GLCM Correlation) and shape feature (CT Sphericity) emerged as the best predictor. The radiomics model significantly outperformed the conventional predictor SUVmax (accuracy: 83.5% vs. 74.7%, p = 9e-9) and identified aggressive subtypes by evaluating FDG uptake in the tumor and tumor shape. It also demonstrated a high negative predictive value of 95.6% compared to SUVmax (88.2%, p = 2e-10). The proposed radiomics approach could reduce unnecessary extensive surgeries for non-aggressive subtype patients, improving surgical decision-making for early-stage lung ADC patients.

15.
Blood Cancer J ; 13(1): 175, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030619

RESUMO

The plasma cell cancer multiple myeloma (MM) varies significantly in genomic characteristics, response to therapy, and long-term prognosis. To investigate global interactions in MM, we combined a known protein interaction network with a large clinically annotated MM dataset. We hypothesized that an unbiased network analysis method based on large-scale similarities in gene expression, copy number aberration, and protein interactions may provide novel biological insights. Applying a novel measure of network robustness, Ollivier-Ricci Curvature, we examined patterns in the RNA-Seq gene expression and CNA data and how they relate to clinical outcomes. Hierarchical clustering using ORC differentiated high-risk subtypes with low progression free survival. Differential gene expression analysis defined 118 genes with significantly aberrant expression. These genes, while not previously associated with MM, were associated with DNA repair, apoptosis, and the immune system. Univariate analysis identified 8/118 to be prognostic genes; all associated with the immune system. A network topology analysis identified both hub and bridge genes which connect known genes of biological significance of MM. Taken together, gene interaction network analysis in MM uses a novel method of global assessment to demonstrate complex immune dysregulation associated with shorter survival.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Prognóstico , Mapas de Interação de Proteínas , Genômica/métodos , Apoptose
16.
Comput Methods Programs Biomed ; 242: 107833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863013

RESUMO

BACKGROUND AND OBJECTIVES: Radiotherapy prescriptions currently derive from population-wide guidelines established through large clinical trials. We provide an open-source software tool for patient-specific prescription determination using personalized dose-response curves. METHODS: We developed ROE, a plugin to the Computational Environment for Radiotherapy Research to visualize predicted tumor control and normal tissue complication simultaneously, as a function of prescription dose. ROE can be used natively with MATLAB and is additionally made accessible in GNU Octave and Python, eliminating the need for commercial licenses. It provides a curated library of published and validated predictive models and incorporates clinical restrictions on normal tissue outcomes. ROE additionally provides batch-mode tools to evaluate and select among different fractionation schemes and analyze radiotherapy outcomes across patient cohorts. CONCLUSION: ROE is an open-source, GPL-copyrighted tool for interactive exploration of the dose-response relationship to aid in radiotherapy planning. We demonstrate its potential clinical relevance in (1) improving patient awareness by quantifying the risks and benefits of a given treatment protocol (2) assessing the potential for dose escalation across patient cohorts and (3) estimating accrual rates of new protocols.


Assuntos
Neoplasias , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Neoplasias/radioterapia , Dosagem Radioterapêutica , Prescrições
17.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745374

RESUMO

The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.

18.
Phys Imaging Radiat Oncol ; 27: 100452, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37720463

RESUMO

Background and purpose: Patients with brain metastases (BMs) are surviving longer and returning for multiple courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) imaging every 2-3 months. This study investigated whether it is possible to automatically track BMs on longitudinal imaging and quantify the tumor response after radiotherapy. Methods: The METRO process (MEtastasis Tracking with Repeated Observations was developed to automatically process patient data and track BMs. A longitudinal intrapatient registration method for T1 MR post-Gd was conceived and validated on 20 patients. Detections and volumetric measurements of BMs were obtained from a deep learning model. BM tracking was validated on 32 separate patients by comparing results with manual measurements of BM response and radiologists' assessments of new BMs. Linear regression and residual analysis were used to assess accuracy in determining tumor response and size change. Results: A total of 123 irradiated BMs and 38 new BMs were successfully tracked. 66 irradiated BMs were visible on follow-up imaging 3-9 months after radiotherapy. Comparing their longest diameter changes measured manually vs. METRO, the Pearson correlation coefficient was 0.88 (p < 0.001); the mean residual error was -8 ± 17%. The mean registration error was 1.5 ± 0.2 mm. Conclusions: Automatic, longitudinal tracking of BMs using deep learning methods is feasible. In particular, the software system METRO fulfills a need to automatically track and quantify volumetric changes of BMs prior to, and in response to, radiation therapy.

19.
Front Genet ; 14: 1161047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529777

RESUMO

Drug-induced liver injury (DILI) is an adverse hepatic drug reaction that can potentially lead to life-threatening liver failure. Previously published work in the scientific literature on DILI has provided valuable insights for the understanding of hepatotoxicity as well as drug development. However, the manual search of scientific literature in PubMed is laborious and time-consuming. Natural language processing (NLP) techniques along with artificial intelligence/machine learning approaches may allow for automatic processing in identifying DILI-related literature, but useful methods are yet to be demonstrated. To address this issue, we have developed an integrated NLP/machine learning classification model to identify DILI-related literature using only paper titles and abstracts. For prediction modeling, we used 14,203 publications provided by the Critical Assessment of Massive Data Analysis (CAMDA) challenge, employing word vectorization techniques in NLP in conjunction with machine learning methods. Classification modeling was performed using 2/3 of the data for training and the remainder for test in internal validation. The best performance was achieved using a linear support vector machine (SVM) model on the combined vectors derived from term frequency-inverse document frequency (TF-IDF) and Word2Vec, resulting in an accuracy of 95.0% and an F1-score of 95.0%. The final SVM model constructed from all 14,203 publications was tested on independent datasets, resulting in accuracies of 92.5%, 96.3%, and 98.3%, and F1-scores of 93.5%, 86.1%, and 75.6% for three test sets (T1-T3). Furthermore, the SVM model was tested on four external validation sets (V1-V4), resulting in accuracies of 92.0%, 96.2%, 98.3%, and 93.1%, and F1-scores of 92.4%, 82.9%, 75.0%, and 93.3%.

20.
Front Oncol ; 13: 1156389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503315

RESUMO

Purpose: For patients receiving lung stereotactic ablative radiotherapy (SABR), evidence suggests that high peritumor density predicts an increased risk of microscopic disease (MDE) and local-regional failure, but only if there is low or heterogenous incidental dose surrounding the tumor (GTV). A data-mining method (Cox-per-radius) has been developed to investigate this dose-density interaction. We apply the method to predict local relapse (LR) and regional failure (RF) in patients with non-small cell lung cancer. Methods: 199 patients treated in a routine setting were collated from a single institution for training, and 76 patients from an external institution for validation. Three density metrics (mean, 90th percentile, standard deviation (SD)) were studied in 1mm annuli between 0.5cm inside and 2cm outside the GTV boundary. Dose SD and fraction of volume receiving less than 30Gy were studied in annuli 0.5-2cm outside the GTV to describe incidental MDE dosage. Heat-maps were created that correlate with changes in LR and RF rates due to the interaction between dose heterogeneity and density at each distance combination. Regions of significant improvement were studied in Cox proportional hazards models, and explored with and without re-fitting in external data. Correlations between the dose component of the interaction and common dose metrics were reported. Results: Local relapse occurred at a rate of 6.5% in the training cohort, and 18% in the validation cohort, which included larger and more centrally located tumors. High peritumor density in combination with high dose variability (0.5 - 1.6cm) predicts LR. No interactions predicted RF. The LR interaction improved the predictive ability compared to using clinical variables alone (optimism-adjusted C-index; 0.82 vs 0.76). Re-fitting model coefficients in external data confirmed the importance of this interaction (C-index; 0.86 vs 0.76). Dose variability in the 0.5-1.6 cm annular region strongly correlates with heterogeneity inside the target volume (SD; ρ = 0.53 training, ρ = 0.65 validation). Conclusion: In these real-world cohorts, the combination of relatively high peritumor density and high dose variability predicts increase in LR, but not RF, following lung SABR. This external validation justifies potential use of the model to increase low-dose CTV margins for high-risk patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...