Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109159, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405612

RESUMO

Meeting the challenges of agroecological transition in a context of climate change requires the use of various strategies such as biological regulations, adapted animal and plant genotypes, diversified production systems, and digital technologies. Seeds and plants, through plant breeding, play a crucial role in driving these changes. The emergence of genome editing presents a new opportunity in plant breeding practices. However, like any technological revolution involving living organisms, it is essential to assess its potential contributions, limits, risks, socio-economic implications, and the associated controversies. This article aims to provide a comprehensive review of scientific knowledge on genome editing for agroecological transition, drawing on multidisciplinary approaches encompassing biological, agronomic, economic, and social sciences.

2.
PLoS One ; 18(11): e0293671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910575

RESUMO

Diversification and intensification of cropping systems can ensure farm profitability while reducing negative environmental impacts of agriculture. Wheat-soybean relay cropping (RC), which consists in planting soybean into standing wheat prior to its harvest, may have this potential although it is poorly adopted by French and European farmers. One of the reasons underlying this lack of adoption could be poor emergence rates and biomass production of soybean, due to a severe competition from the already established primary crop for water, light and nutrients during the co-growth or intercrop phase. All these constraints during the early plant growth could finally affect soybean grain yield and thus farm profitability. Here, we performed a laboratory experiment followed by a 2-year field trial (2021-2022) to investigate potential differences among seven soybean cultivars belonging to different maturity groups (from very early to late) in terms of early growth traits viz. seed germination, seedling emergence vigor and final rates, and early biomass production in wheat-soybean RC. A reference soybean variety belonging to late maturity group (cv. ES Pallador) was also sown under conventional cropping system as control treatment (hereafter referred to as CC). Under laboratory conditions, the base water potential for germination ranged from -0.65 to -0.45 MPa with significant differences (p<0.001) among the tested cultivars indicating their differential tolerance to water stress. Under field conditions, seedling emergence vigor, an index explaining the speed of emergence, ranged from 0.23 to 0.41 and from 0.24 to 0.33 while final emergence rates ranged from 69% to 93% and from 65 to 90% in 2021 and 2022, respectively. We found significant effect of cultivar, year and cultivar x year interaction on emergence vigor (p<0.001) and final emergence rates (p<0.01, p<0.05 and p<0.01, respectively) of soybean cultivars. Significantly higher emergence vigor of the referent cv. ES Pallador was observed in RC compared to CC cropping system in 2021 (0.40 and 0.34, respectively) but not in 2022 (0.29 and 0.31, respectively). Water stress in the seedbed was higher in RC compared to the CC and was the main cause affecting seed germination and seedling emergence vigor especially in 2022. We found a positive correlation between seedling emergence vigor and seedling final emergence rates indicating that a lower speed of seedling emergence, due to seedbed stress factors, affects final emergence rates of soybean. Post-emergence losses due to pigeons were significantly higher (p<0.001) in CC compared to RC (30% and 2% in 2021, and 29% and 2% in 2022 in CC and RC, respectively). Significantly higher biomass production was observed in CC compared to that in RC both in 2021 (162 vs 33 g/m2 of dry matter; p<0.001) and 2022 (252 vs 60 g/m2 of dry matter; p<0.001). Overall, pre-/post-emergence water stress in the seedbed and post-emergence damage due to pigeons are the most important factors affecting a uniform and robust soybean establishment under RC and CC, respectively under southern French conditions.


Assuntos
Plântula , Triticum , Glycine max , Biomassa , Desidratação , Sementes
3.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37035025

RESUMO

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

4.
Glob Chang Biol ; 29(5): 1340-1358, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524285

RESUMO

The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.


Assuntos
Secas , Glycine max , Glycine max/genética , Mudança Climática , Melhoramento Vegetal , Europa (Continente)
5.
Theor Appl Genet ; 135(11): 4049-4063, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35294575

RESUMO

KEY MESSAGE: Crop simulation helps to analyze environmental impacts on crops and provides year-independent context information. This information is of major importance when deciding which cultivar to choose at sowing time. Plant breeding programs design new crop cultivars which, while developed for distinct populations of environments, are nevertheless grown over large areas during their time in the market. Over its cultivation area, the crop is exposed to highly diverse stress patterns caused by climatic uncertainty and multiple management options, which often leads to decreased expected crop performance. In this study, we aim to assess how finer spatial management of genetic resources could reduce the yield variance explained by genotype × environment interactions in a set of cropping environments and ultimately improve the efficiency and stability of crop production. We used modeling and simulation to predict the crop performance resulting from the interaction between cultivar growth and development, climate and soil conditions, and management practices. We designed a computational experiment that evaluated the performance of a collection of commercial sunflower cultivars in a realistic population of cropping conditions in France, built from extensive agricultural surveys. Distinct farming locations sharing similar simulated abiotic stress patterns were clustered together to specify environment types. We then used optimization methods to search for cultivars × environments combinations leading to increased yield expectations. Results showed that a single cultivar choice adapted to the most frequent environment-type in the population is a robust strategy. However, the relevance of cultivar recommendations to specific locations was gradually increasing with the knowledge of pedo-climatic conditions. We argue that this approach while being operational on current genetic material could act synergistically with plant breeding as more diverse material could enable access to cultivars with distinctive traits, more adapted to specific conditions.


Assuntos
Helianthus , Helianthus/genética , França
6.
Front Plant Sci ; 11: 558855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983214

RESUMO

Soybean emergence and yield may be affected by many factors. A better understanding of the cultivar x sowing date x environment interactions could shed light into the competitiveness of soybean with other crops, notably, to help manage major biotic and abiotic factors that limit soybean production. We conducted a 2-year field experiments to measure emergence dynamics and final rates of three soybean cultivars from different maturity groups, with early and conventional sowing dates and across three locations. We also measured germination parameter values of the three soybean cultivars from different maturity groups under controlled experiments to parametrize the SIMPLE crop emergence model. This allowed us to assess the prediction quality of the model for emergence rates and to perform simulations. Final emergence rates under field conditions ranged from 62% to 92% and from 51% to 94% for early and conventional sowing, respectively. The model finely predicted emergence courses and final rates (root mean square error of prediction (RMSEP), efficiency (EF), and mean deviation (MD) ranging between 2% to 18%, 0.46% to 0.99%, and -10% to 15%, respectively) across a wide range of the sowing conditions tested. Differences in the final emergence rates were found, not only among cultivars but also among locations for the same cultivar, although no clear trend or consistent ranking was found in this regard. Modeling suggests that seedling mortality rates were dependent on the soil type with up to 35% and 14% of mortality in the silty loam soil, due to a soil surface crust and soil aggregates, respectively. Non-germination was the least important cause of seedling mortality in all soil types (up to 3% of emergence losses), while no seedling mortality due to drought was observed. The average grain yield ranged from 3.1 to 4.0 t ha-1, and it was significantly affected by the irrigation regime (p < 0.001) and year (p < 0.001) but not by locations, sowing date or cultivars. We conclude that early sowing is unlikely to affect soybean emergence in South-West of France and therefore may represent an important agronomic lever to escape summer drought that markedly limit soybean yield in this region.

7.
Front Plant Sci ; 10: 1755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063913

RESUMO

Developing new cropping strategies (very early sowing, crop expansion at higher latitudes, double cropping) to improve soybean production in Europe under climate change needs a good prediction of phenology under different temperature and photoperiod conditions. For that purpose, a simple phenology algorithm (SPA) was developed and parameterized for 10 contrasting soybean cultivars (maturity group 000 to II). Two experiments were carried out at INRA Toulouse (France) for parameterization: 1) Phenological monitoring of plants in pots on an outdoor platform with 6 planting dates. 2) Response of seed germination to temperature in controlled conditions. Multi-location field trials including 5 sites, 4 years, 2 sowing dates, and 10 cultivars were used to evaluate the SPA phenology predictions. Mean cardinal temperatures (minimum, optimum, and maximum) for germination were ca. 2, 30, and 40°C, respectively with significant differences among cultivars. The photoperiod sensitivity coefficient varied among cultivars when fixing Popt and Pcrt, optimal and critical photoperiods respectively, by maturity group. The parameterized algorithm showed an RMSE of less than 6 days for the prediction of crop cycle duration (i.e. cotyledons stage to physiological maturity) in the field trials including 75 data points. Flowering (R1 stage), and beginning of grain filling (R5 stage) dates were satisfactorily predicted with RMSEs of 8.2 and 9.4 days respectively. Because SPA can be also parameterized using data from field experiments, it can be useful as a plant selection tool across environments. The algorithm can be readily applied to species other than soybean, and its incorporation into cropping systems models would enhance the assessment of the performance of crop cultivars under climate change scenarios.

8.
Data Brief ; 21: 1296-1301, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456247

RESUMO

This article presents experimental data describing the physiology and morphology of sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen at INRA Toulouse (France). Here, we provide data including specific leaf area, osmotic potential and adjustment, carbon isotope discrimination, leaf transpiration, plant architecture: plant height, leaf number, stem diameter. We also provide leaf areas of individual organs through time and growth rate during the stress period, environmental data such as temperatures, wind and radiation during the experiment. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the physiological basis of heterosis. It is available on the following repository: https://doi.org/10.25794/phenotype/er6lPW7V.

9.
Funct Plant Biol ; 43(8): 797-805, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480504

RESUMO

Water deficit influences leaf transpiration rate and photosynthetic activity. The genotype-dependent response of the latter has not been assessed in sunflower (Helianthus annuus L.), particularly during the reproductive period when grain filling and lipogenesis depend greatly on photosynthate availability. To evaluate genotypic responses to water deficit before and after flowering, two greenhouse experiments were performed. Four genotypes-two inbred lines (PSC8, XRQ) and two cultivars (Inedi, Melody)-were subjected to progressive water deficit. Non-linear regression was used to calculate the soil water deficit threshold (FTSWt) at which processes (transpiration and photosynthetic activity) were affected by water deficit. In the vegetative growth stage, photosynthetic activity was affected at a lower mean value of FTSWt (0.39) than transpiration (0.55). However, in the reproductive stage, photosynthetic activity was more sensitive to soil water deficit (FTSWt=0.45). We found a significant (P=0.02) effect of plant growth stage on the difference between photosynthesis and transpiration rate thresholds and, a significant (P=0.03) effect of leaf age on transpiration. Such results will improve phenotyping methods and provide paths for integrating genotypic variability into crop models.

10.
PLoS One ; 8(10): e75829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146783

RESUMO

IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.


Assuntos
Produtos Agrícolas/microbiologia , Modelos Estatísticos , Doenças das Plantas/microbiologia , Software , Triticum/microbiologia , Agricultura , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Simulação por Computador , Fertilizantes/estatística & dados numéricos , Previsões , Humanos , Estações do Ano
11.
Plant Cell Environ ; 36(12): 2175-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639099

RESUMO

Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.


Assuntos
Biomarcadores/metabolismo , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/fisiologia , Água/fisiologia , Ritmo Circadiano/genética , Desidratação , Secas , Perfilação da Expressão Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Genótipo , Cinética , Modelos Lineares , Transpiração Vegetal/fisiologia , Reprodutibilidade dos Testes , Solo
12.
Funct Plant Biol ; 38(3): 246-259, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480881

RESUMO

Present work focussed on improving the description of organogenesis, morphogenesis and metabolism in a biophysical plant model (SUNFLO) applied to sunflower (Helianthus annuus L.). This first version of the model is designed for potential growth conditions without any abiotic or biotic stresses. A greenhouse experiment was conducted to identify and estimate the phenotypic traits involved in plant productivity variability of 26 sunflower genotypes. The ability of SUNFLO to discriminate the genotypes was tested on previous results of a field survey aimed at evaluating the genetic progress since 1960. Plants were phenotyped in four directions; phenology, architecture, photosynthesis and biomass allocation. Twelve genotypic parameters were chosen to account for the phenotypic variability. SUNFLO was built to evaluate their respective contribution to the variability of yield potential. A large phenotypic variability was found for all genotypic parameters. SUNFLO was able to account for 80% of observed variability in yield potential and to analyse the phenotypic variability of complex plant traits such as light interception efficiency or seed yield. It suggested that several ways are possible to reach high yields in sunflower. Unlike classical statistical analysis, this modelling approach highlights some efficient parameter combinations used by the most productive genotypes. The next steps will be to evaluate the genetic determinisms of the genotypic parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...