Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(39): 7602-7612, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756111

RESUMO

Complex coacervate core micelles (C3Ms) are supramolecular soft nanostructures formed by the assembly of a block copolymer and an oppositely charged homopolymer. The coacervation of the charged segments in both macromolecules drives the formation of the core of the C3M, while the neutral block of the copolymer forms the corona. This work introduces a molecular theory (MOLT) that predicts the internal structure and stimuli-responsive properties of C3Ms and explicitly considers the chemical architecture of the polyelectrolytes, their acid-based equilibria and electrostatic and non-electrostatic interactions. In order to accurately predict complex coacervation, the correlations between charged species are incorporated into MOLT as ion-pairing processes, which are modeled using a coupled chemical equilibrium formalism. Very good agreement was observed between the experimental results in the literature and MOLT predictions for the scaling relationships that relate the dimensions of the micelle (aggregation number and sizes of the micelle and the core) to the lengths of the different blocks. MOLT was used to study the disassembly of the micelles when the solution pH is driven away from the value that guarantees the charge stoichiometry of the core. This study reveals that very sharp disassembly transitions can be obtained by tuning the length or architecture of the copolymer component, thereby suggesting potential routes to design C3Ms capable of releasing their components at very precise pH values.

2.
J Phys Chem B ; 127(35): 7636-7647, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37639479

RESUMO

This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.

3.
ACS Omega ; 7(43): 38109-38121, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340074

RESUMO

The supramolecular organization of soft materials, such as colloids, polymers, and amphiphiles, results from a subtle balance of weak intermolecular interactions and entropic forces. This competition can drive the self-organization of soft materials at the nano-/mesoscale. Modeling soft-matter self-assembly requires, therefore, considering a complex interplay of forces at the relevant length scales without sacrificing the molecular details that define the chemical identity of the system. This mini-review focuses on the application of a tool known as molecular theory to study self-assembly in different types of soft materials. This tool is based on extremizing an approximate free energy functional of the system, and, therefore, it provides a direct, computationally affordable estimation of the stability of different self-assembled morphologies. Moreover, the molecular theory explicitly incorporates structural details of the chemical species in the system, accounts for their conformational degrees of freedom, and explicitly includes their chemical equilibria. This mini-review introduces the general ideas behind the theoretical formalism and discusses its advantages and limitations compared with other theoretical tools commonly used to study self-assembled soft materials. Recent application examples are discussed: the self-patterning of polyelectrolyte brushes on planar and curved surfaces, the formation of nanoparticle (NP) superlattices, and the self-organization of amphiphiles into micelles of different shapes. Finally, prospective methodological improvements and extensions (also relevant for related theoretical tools) are analyzed.

4.
J Chem Phys ; 153(14): 144903, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086835

RESUMO

This work applies a molecular theory to study the formation of lateral self-assembled aggregates in mixed brushes composed of polyanion and polycation chains. In order to overcome the well-known limitations of mean-field electrostatics to capture polyelectrolyte complexation, the formation of ion pairs between anionic and cationic groups in the polyelectrolytes is explicitly modeled in our theory as an association reaction. This feature is essential to capture the microphase separation of the mixed brush and the formation of lateral aggregates triggered by polyelectrolyte complexation. The effects of solution pH and ionic strength, surface coverage, and chain length on the morphology of the mixed brush are systematically explored. It is shown that increasing salt concentration leads to the rupture of polyelectrolyte complexes and the stabilization of the homogeneous, non-aggregated brush, providing that the formation of ion pairs between the polyelectrolytes and the salt ions in solution is explicitly accounted for by the theory. The inclusion of ion-pairing association reactions between oppositely charged polyelectrolytes within a mean-field description of electrostatics emerges from this work as a useful and simple theoretical approach to capture the formation of polyelectrolyte complexes and their responsiveness to solution ionic strength and pH.

5.
Soft Matter ; 15(45): 9318-9324, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31681927

RESUMO

The formation of novel interpolymer complexes (IPCs) between poly(sulfonic acid)s and poly(ethylene oxide) (PEO) is reported. The complexes were precipitated from polymer mixtures in aqueous solution and deposited on surfaces as layer-by-layer films. Based on evidence from infrared spectroscopy, the interpolymer association in poly(sulfonic acid)/PEO IPCs is ascribed to hydrogen bonding between the sulfonic acid and the ether in PEO. This interaction is not anticipated because sulfonic acids are fully dissociated in aqueous solutions due to their strong acidity. Theoretical calculations suggest that the unexpected association of PEO and poly(sulfonic acid)s results from the formation of very strong sulfonic-acid/ether hydrogen bonds, which increase the apparent pKas of the poly(sulfonic acid)s and, therefore, decrease the net charge of these polymers. It is shown that while poly(styrene sulfonic acid) (PSSA) and Nafion form IPCs with PEO, poly(vinyl sulfonic acid) (PVSA) does not. This result is explained in terms of the hydrodrophobic nature of PSSA and Nafion, which stabilizes their IPCs, and the fact that hydrogen bonds in PSSA/PEO IPCs are predicted to be stronger than in PVSA/PEO IPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...