Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147911

RESUMO

Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-FIO2) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 FIO2). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.

2.
J Vestib Res ; 33(1): 31-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530112

RESUMO

BACKGROUND: Hypoxia influences standing balance and vestibular function. OBJECTIVE: The purpose here was to investigate the effect of hypoxia on the vestibular control of balance. METHODS: Twenty participants (10 males; 10 females) were tested over two days (normobaric hypoxia and normoxia). Participants stood on a force plate (head rotated leftward) and experienced random, continuous electrical vestibular stimulation (EVS) during trials of eyes open (EO) and closed (EC) at baseline (BL), after 5 (H1), 30 (H2) and 55-min (H3) of hypoxia, and 10-min into normoxic recovery (NR). Vestibular-evoked balance responses were quantified using cumulant density, coherence, and gain functions between EVS and anteroposterior forces. RESULTS: Oxyhemoglobin saturation, end-tidal oxygen and carbon dioxide decreased for H1-3 compared to BL; however, end-tidal carbon dioxide remained reduced at NR with EC (p≤0.003). EVS-AP force peak-to-peak amplitude was lower at H3 and NR than at BL (p≤0.01). At multiple frequencies, EVS-AP force coherence and gain estimates were lower at H3 and NR than BL for females; however, this was only observed for coherence for males. CONCLUSIONS: Overall, vestibular-evoked balance responses are blunted following normobaric hypoxia >30 min, which persists into NR and may contribute to the reported increases in postural sway.


Assuntos
Músculo Esquelético , Vestíbulo do Labirinto , Masculino , Feminino , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Dióxido de Carbono , Sensação , Vestíbulo do Labirinto/fisiologia , Hipóxia , Equilíbrio Postural/fisiologia
3.
Appl Physiol Nutr Metab ; 46(10): 1257-1264, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33930277

RESUMO

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11 males/9 females) trained 3/wk for 8 wk using high pressure (100% resting limb occlusion pressure, LOP; 20% one-repetition maximum (1RM)), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (TRT; 70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p > 0.05). Neither TSI% nor BL concentration differed between groups (p > 0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI% × time) (-6352 ± 3081, -3939 ± 1835, -2532 ± 1349 au for moderate pressure, high pressure, and TRT, p = 0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to TRT. Further, varied occlusion pressure does not impact these outcomes or elicit changes in TSI% or BL concentrations. Novelty: Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations.


Assuntos
Hipóxia , Ácido Láctico/sangue , Músculo Esquelético/crescimento & desenvolvimento , Fluxo Sanguíneo Regional , Treinamento Resistido , Adaptação Fisiológica , Adulto , Constrição , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético/irrigação sanguínea , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA