Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109858, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784015

RESUMO

In this study, we measured the kinase activity profiles of 32 pre-treatment tumor biopsies of HER2-positive breast cancer patients. The aim of this study was to assess the prognostic potential of kinase activity levels, to identify potential mechanisms of resistance and to predict treatment success of HER2-targeted therapy combined with chemotherapy. Indeed, our system-wide kinase activity analysis allowed us to link kinase activity to treatment response. Overall, high kinase activity in the HER2-pathway was associated with good treatment outcome. We found eleven kinases differentially regulated between treatment outcome groups, including well-known players in therapy resistance, such as p38a, ERK, and FAK, and an unreported one, namely MARK1. Lastly, we defined an optimal signature of four kinases in a multiple logistic regression diagnostic test for prediction of treatment outcome (AUC = 0.926). This kinase signature showed high sensitivity and specificity, indicating its potential as predictive biomarker for treatment success of HER2-targeted therapy.

2.
Mol Oncol ; 18(1): 156-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37854018

RESUMO

Breast cancer (BCa) is a highly heterogeneous disease, with hormone receptor status being a key factor in patient prognostication and treatment decision-making. The majority of primary tumours are positive for oestrogen receptor alpha (ERα), which plays a key role in tumorigenesis and disease progression, and represents the major target for treatment of BCa. However, around one-third of patients with ERα-positive BCa relapse and progress into the metastatic stage, with 20% of metastatic cases characterised by loss of ERα expression after endocrine treatment, known as ERα-conversion. It remains unclear whether ERα-converted cancers are biologically similar to bona fide ERα-negative disease and which signalling cascades compensate for ERα loss and drive tumour progression. To better understand the biological changes that occur in metastatic BCa upon ERα loss, we performed (phospho)proteomics analysis of 47 malignant pleural effusions derived from 37 BCa patients, comparing ERα-positive, ERα-converted and ERα-negative cases. Our data revealed that the loss of ERα-dependency in this metastatic site leads to only a partial switch to an ERα-negative molecular phenotype, with preservation of a luminal-like proteomic landscape. Furthermore, we found evidence for decreased activity of several key kinases, including serum/glucocorticoid regulated kinase 1 (SGK1), in ERα-converted metastases. Loss of SGK1 substrate phosphorylation may compensate for the loss of ERα-dependency in advanced disease and exposes a potential therapeutic vulnerability that may be exploited in treating these patients.


Assuntos
Neoplasias da Mama , Derrame Pleural Maligno , Feminino , Humanos , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Glucocorticoides/uso terapêutico , Proteômica
3.
Cell Rep Med ; 4(10): 101203, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794585

RESUMO

Patients with early-stage HER2-overexpressing breast cancer struggle with treatment resistance in 20%-40% of cases. More information is needed to predict HER2 therapy response and resistance in vivo. In this study, we perform (phospho)proteomics analysis of pre-treatment HER2+ needle biopsies of early-stage invasive breast cancer to identify molecular signatures predictive of treatment response to trastuzumab, pertuzumab, and chemotherapy. Our data show that accurate quantification of the estrogen receptor (ER) and HER2 biomarkers, combined with the assessment of associated biological features, has the potential to enable better treatment outcome prediction. In addition, we identify cellular mechanisms that potentially precondition tumors to resist therapy. We find proteins with expression changes that correlate with resistance and constitute to a strong predictive signature for treatment success in our patient cohort. Our results highlight the multifactorial nature of drug resistance in vivo and demonstrate the necessity of deep tumor profiling.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Terapia Neoadjuvante , Biópsia por Agulha
4.
Nat Commun ; 12(1): 4360, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272384

RESUMO

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Glucocorticoides/farmacologia , Neoplasias Pulmonares/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Proteômica , Pirazinas/farmacologia , RNA Interferente Pequeno , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Leukemia ; 35(12): 3394-3405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34007050

RESUMO

(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Esteroides/farmacologia , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-7 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7 , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Syst ; 9(4): 366-374.e5, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31521607

RESUMO

Aberrant kinase activity has been linked to a variety of disorders; however, methods to probe kinase activation states in cells have been lacking. Until now, kinase activity has mainly been deduced from either protein expression or substrate phosphorylation levels. Here, we describe a strategy to directly infer kinase activation through targeted quantification of T-loop phosphorylation, which serves as a critical activation switch in a majority of protein kinases. Combining selective phosphopeptide enrichment with robust targeted mass spectrometry, we provide highly specific assays for 248 peptides, covering 221 phosphosites in the T-loop region of 178 human kinases. Using these assays, we monitored the activation of 63 kinases through 73 T-loop phosphosites across different cell types, primary cells, and patient-derived tissue material. The sensitivity of our assays is highlighted by the reproducible detection of TNF-α-induced RIPK1 activation and the detection of 46 T-loop phosphorylation sites from a breast tumor needle biopsy.


Assuntos
Neoplasias da Mama/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/metabolismo , Proteômica/métodos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Biópsia por Agulha , Ativação Enzimática , Feminino , Humanos , Células Jurkat , Espectrometria de Massas , Fosforilação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...