Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403858

RESUMO

Dense or glassy active matter, as a result of its remarkable resemblance to passive glass-forming materials, is enjoying increasing scientific interest. To better grasp the subtle effect of active motion on the process of vitrification, a number of active mode-coupling theories (MCTs) have recently been developed. These have proven capable of qualitatively predicting important parts of the active glassy phenomenology. However, most efforts so far have only considered single-component materials, and their derivations are arguably more complex than the standard MCT case, which might hinder broader usage. Here we present a detailed derivation of a distinct active MCT for mixtures of athermal self-propelled particles that is more transparent than previously introduced versions. The key insight is that we can follow a similar strategy for our overdamped active system as is typically used for passive underdamped MCT. Interestingly, when only considering one particle species, our theory gives the exact same result as the one obtained in previous work, which employed a highly different mode-coupling strategy. Moreover, we assess the quality of the theory and its novel extension to multi-component materials by using it to predict the dynamics of a Kob-Andersen mixture of athermal active Brownian quasi-hard spheres. We demonstrate that our theory is able to capture all qualitative features, most notably the location of the optimum of the dynamics when the persistence length and cage length coincide, for each combination of particle types.

2.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37366311

RESUMO

Memory effects are ubiquitous in a wide variety of complex physical phenomena, ranging from glassy dynamics and metamaterials to climate models. The Generalized Langevin Equation (GLE) provides a rigorous way to describe memory effects via the so-called memory kernel in an integro-differential equation. However, the memory kernel is often unknown, and accurately predicting or measuring it via, e.g., a numerical inverse Laplace transform remains a herculean task. Here, we describe a novel method using deep neural networks (DNNs) to measure memory kernels from dynamical data. As a proof-of-principle, we focus on the notoriously long-lived memory effects of glass-forming systems, which have proved a major challenge to existing methods. In particular, we learn the operator mapping dynamics to memory kernels from a training set generated with the Mode-Coupling Theory (MCT) of hard spheres. Our DNNs are remarkably robust against noise, in contrast to conventional techniques. Furthermore, we demonstrate that a network trained on data generated from analytic theory (hard-sphere MCT) generalizes well to data from simulations of a different system (Brownian Weeks-Chandler-Andersen particles). Finally, we train a network on a set of phenomenological kernels and demonstrate its effectiveness in generalizing to both unseen phenomenological examples and supercooled hard-sphere MCT data. We provide a general pipeline, KernelLearner, for training networks to extract memory kernels from any non-Markovian system described by a GLE. The success of our DNN method applied to noisy glassy systems suggests that deep learning can play an important role in the study of dynamical systems with memory.

3.
Phys Rev Lett ; 130(5): 058201, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800471

RESUMO

Chiral active matter is enjoying a rapid increase of interest, spurred by the rich variety of asymmetries that can be attained in, e.g., the shape or self-propulsion mechanism of active particles. Though this has already led to the observance of so-called chiral crystals, active chiral glasses remain largely unexplored. A possible reason for this could be the naive expectation that interactions dominate the glassy dynamics and the details of the active motion become increasingly less relevant. Here, we show that quite the opposite is true by studying the glassy dynamics of interacting chiral active Brownian particles. We demonstrate that when our chiral fluid is pushed to glassy conditions, it exhibits highly nontrivial dynamics, especially compared to a standard linear active fluid such as common active Brownian particles. Despite the added complexity, we are still able to present a full rationalization for all identified dynamical regimes. Most notably, we introduce a new "hammering" mechanism, unique to rapidly spinning particles in high-density conditions, that can fluidize a chiral active solid.

4.
J Chem Phys ; 157(22): 224902, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546821

RESUMO

Recent years have seen a rapid increase of interest in dense active materials, which, in the disordered state, share striking similarities with the conventional passive glass-forming matter. For such passive glassy materials, it is well established (at least in three dimensions) that the details of the microscopic dynamics, e.g., Newtonian or Brownian, do not influence the long-time glassy behavior. Here, we investigate whether this still holds true in the non-equilibrium active case by considering two simple and widely used active particle models, i.e., active Ornstein-Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs). In particular, we seek to gain more insight into the role of the self-propulsion mechanism on the glassy dynamics by deriving a mode-coupling theory (MCT) for thermal AOUPs, which can be directly compared to a recently developed MCT for ABPs. Both theories explicitly take into account the active degrees of freedom. We solve the AOUP- and ABP-MCT equations in two dimensions and demonstrate that both models give almost identical results for the intermediate scattering function over a large variety of control parameters (packing fractions, active speeds, and persistence times). We also confirm this theoretical equivalence between the different self-propulsion mechanisms numerically via simulations of a polydisperse mixture of active quasi-hard spheres, thereby establishing that, at least for these model systems, the microscopic details of self-propulsion do not alter the active glassy behavior.

5.
Phys Rev Lett ; 129(14): 145501, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240416

RESUMO

It is widely believed that the emergence of slow glassy dynamics is encoded in a material's microstructure. First-principles theory [mode-coupling theory (MCT)] is able to predict the dramatic slowdown of the dynamics from only static two-point correlations as input, yet it cannot capture all of the observed dynamical behavior. Here we go beyond two-point spatial correlation functions by extending MCT systematically to include higher-order static and dynamic correlations. We demonstrate that only adding the static triplet direct correlations already qualitatively changes the predicted glass-transition diagram of binary hard spheres and silica. Moreover, we find a nontrivial competition between static triplet correlations that work to stabilize the glass state and dynamic higher-order correlations that destabilize it for both materials. We conclude that the conventionally neglected static triplet direct correlations as well as higher-order dynamic correlations are, in fact, non-negligible in both fragile and strong glassformers.

6.
ACS Nano ; 15(10): 15794-15802, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34550677

RESUMO

The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.


Assuntos
Nanopartículas , Substâncias Macromoleculares , Simulação de Dinâmica Molecular , Movimento (Física)
7.
J Chem Phys ; 155(3): 034502, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293894

RESUMO

We develop a first-principles-based generalized mode-coupling theory (GMCT) for the tagged-particle motion of glassy systems. This theory establishes a hierarchy of coupled integro-differential equations for self-multi-point density correlation functions, which can formally be extended up to infinite order. We use our GMCT framework to calculate the self-nonergodicity parameters and the self-intermediate scattering function for the Percus-Yevick hard-sphere system based on the first few levels of the GMCT hierarchy. We also test the scaling laws in the α- and ß-relaxation regimes near the glass-transition singularity. Furthermore, we study the mean-square displacement and the Stokes-Einstein relation in the supercooled regime. We find that qualitatively our GMCT results share many similarities with the well-established predictions from standard mode-coupling theory, but the quantitative results change, and typically improve, by increasing the GMCT closure level. However, we also demonstrate on general theoretical grounds that the current GMCT framework is unable to account for violation of the Stokes-Einstein relation, underlining the need for further improvements in the first-principles description of glassy dynamics.

8.
Eur Phys J E Soft Matter ; 44(7): 91, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34231080

RESUMO

The emergence of glassy dynamics and the glass transition in dense disordered systems is still not fully understood theoretically. Mode-coupling theory (MCT) has shown to be effective in describing some of the non-trivial features of glass formation, but it cannot explain the full glassy phenomenology due to the strong approximations on which it is based. Generalized mode-coupling theory (GMCT) is a hierarchical extension of the theory, which is able to outclass MCT by carefully describing the dynamics of higher-order correlations in its generalized framework. Unfortunately, the theory has so far only been developed for single-component systems and as a result works poorly for highly polydisperse materials. In this paper, we solve this problem by developing GMCT for multi-component systems. We use it to predict the glassy dynamics of the binary Kob-Andersen Lennard-Jones mixture, as well as its purely repulsive Weeks-Chandler-Andersen analogue. Our results show that each additional level of the GMCT hierarchy gradually improves the predictive power of GMCT beyond its previous limit. This implies that our theory is able to harvest more information from the static correlations, thus being able to better understand the role of attraction in supercooled liquids from a first-principles perspective.

9.
Biophys J ; 120(8): 1483-1497, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33617837

RESUMO

Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.


Assuntos
Neoplasias , Atenção , Biofísica , Movimento Celular , Humanos
10.
Phys Rev Lett ; 127(27): 278002, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061437

RESUMO

Dense active matter is gaining widespread interest due to its remarkable similarity with conventional glass-forming materials. However, active matter is inherently out of equilibrium and even simple models such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave markedly differently from their passive counterparts. Controversially, this difference has been shown to manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics. Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides with the corresponding short-time length scale of the system, which is either the persistence length for athermal systems or a combination of the persistence length and a diffusive length scale for thermal systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile and explain the manifestly disparate departures from equilibrium reported in many previous studies of dense active materials.

11.
Phys Rev E ; 104(6-2): 065302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030832

RESUMO

Generalized mode-coupling theory (GMCT) has recently emerged as a promising first-principles theory to study the poorly understood dynamics of glass-forming materials. Formulated as a hierarchical extension of standard mode-coupling theory (MCT), it is able to systematically improve its predictions by including the exact dynamics of higher-order correlation functions into its hierarchy. However, in contrast to Newtonian dynamics, a fully generalized version of the theory based on Brownian dynamics is still lacking. To close this gap, we provide a detailed derivation of GMCT for colloidal mixtures obeying a many-body Smoluchowski equation. We demonstrate that a hierarchy of coupled equations can again be established and show that these, consistent with standard MCT, are identical to the ones obtained from Newtonian GMCT when taking the overdamped limit. Consequently, the nontrivial similarity between Brownian and Newtonian MCT is maintained for our multicomponent GMCT. As a proof of principle, we also solve the generalized mode-coupling equations for the binary Kob-Andersen Lennard-Jones mixture undergoing Brownian dynamics and confirm the improved predictive power of the theory upon using more levels of the GMCT hierarchy of equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...