Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682980

RESUMO

Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.


Assuntos
Cinurenina , Triptofano , Animais , Biomarcadores , Ecossistema , Inflamação/metabolismo , Cinurenina/metabolismo , Mamíferos/metabolismo , Triptofano/metabolismo
2.
J Dev Orig Health Dis ; 13(2): 156-160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34047687

RESUMO

Prenatal exposure to nicotine, tobacco's major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.


Assuntos
Histonas , Nicotina , Animais , Feminino , Lisina/metabolismo , Metilação , Nicotina/toxicidade , Pâncreas , Gravidez , Ratos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
3.
Opt Lett ; 40(2): 193-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679842

RESUMO

We present a numerical approach to extract group index in photonic crystal (PhC) waveguides using two- and three-dimensional finite-difference time-domain methods and make a quantitative study of the effects of loss on slow light propagation in PhC waveguides. PhC waveguides are simulated with varying material loss and varying PhC waveguide length. Finally, we validate our method by comparing three-dimensional simulation results with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...