Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 328: 121686, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220318

RESUMO

Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.


Assuntos
Produtos Biológicos , Cianobactérias , Cianobactérias/metabolismo , Biotecnologia , Biopolímeros/química , Produtos Biológicos/metabolismo , Polissacarídeos Bacterianos
2.
Int J Biol Macromol ; 259(Pt 1): 129129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181913

RESUMO

Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.


Assuntos
Eliminação de Resíduos , Engenharia Tecidual , Medicina Regenerativa/métodos , Perda e Desperdício de Alimentos , Alimentos , Polímeros , Biopolímeros
3.
Int J Biol Macromol ; 253(Pt 8): 127524, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865365

RESUMO

Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.


Assuntos
Embalagem de Alimentos , Polímeros , Polissacarídeos/química , Celulose/química , Amido/metabolismo , Alginatos
4.
Animals (Basel) ; 13(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37106930

RESUMO

The growing population and healthy food demands have led to a rise in food waste generation, causing severe environmental and economic impacts. However, food waste (FW) can be converted into sustainable animal feed, reducing waste disposal and providing an alternative protein source for animals. The utilization of FW as animal feed presents a solution that not only tackles challenges pertaining to FW management and food security but also lessens the demand for the development of traditional feed, which is an endeavour that is both resource and environmentally intensive in nature. Moreover, this approach can also contribute to the circular economy by creating a closed-loop system that reduces the use of natural resources and minimizes environmental pollution. Therefore, this review discusses the characteristics and types of FW, as well as advanced treatment methods that can be used to recycle FW into high-quality animal feed and its limitations, as well as the benefits and drawbacks of using FW as animal feed. Finally, the review concludes that utilization of FW as animal feed can provide a sustainable solution for FW management, food security, preserving resources, reducing environmental impacts, and contributing to the circular bioeconomy.

5.
Foods ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673441

RESUMO

In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.

6.
Gels ; 9(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661769

RESUMO

Food hydrogels are effective materials of great interest to scientists because they are safe and beneficial to the environment. Hydrogels are widely used in the food industry due to their three-dimensional crosslinked networks. They have also attracted a considerable amount of attention because they can be used in many different ways in the food industry, for example, as fat replacers, target delivery vehicles, encapsulating agents, etc. Gels-particularly proteins and polysaccharides-have attracted the attention of food scientists due to their excellent biocompatibility, biodegradability, nutritional properties, and edibility. Thus, this review is focused on the nutritional importance, microstructure, mechanical characteristics, and food hydrogel applications of gels. This review also focuses on the structural configuration of hydrogels, which implies future potential applications in the food industry. The findings of this review confirm the application of different plant- and animal-based polysaccharide and protein sources as gelling agents. Gel network structure is improved by incorporating polysaccharides for encapsulation of bioactive compounds. Different hydrogel-based formulations are widely used for the encapsulation of bioactive compounds, food texture perception, risk monitoring, and food packaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...