Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(13): 8409-19, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25631050

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes.


Assuntos
Adesinas de Escherichia coli/química , Antígenos de Bactérias/química , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Antígenos CD/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Galactosilceramidas/química , Lactose/química , Lactosilceramidas/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
2.
Microbiology (Reading) ; 158(Pt 3): 736-745, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174382

RESUMO

NAD and NADP are ubiquitous in the metabolism of Escherichia coli K-12. NAD auxotrophy can be rendered by mutation in any of the three genes nadB, nadA and nadC. The nadB and nadA genes were defined as antivirulence loci in Shigella spp., as a mutation (mainly in nadB) disrupting the synthesis of quinolinate is required for virulence. Uropathogenic E. coli (UPEC) isolates from acute cystitis patients, exhibiting nicotinamide auxotrophy, were of serotype O18 : K1 : H7. E. coli UTI89, the model uropathogenic and O18 : K1 : H7 strain, requires nicotinamide or quinolinate for growth. A mutation in the nadB gene, encoding L-aspartate oxidase, was shown to be responsible for the nicotinamide requirement of UTI89. This was further confirmed by complementation of UTI89 with a recombinant plasmid harbouring the nadB gene of E. coli K-12. An Ala28Val point mutant of the recombinant plasmid failed to support the growth of UTI89 in minimal medium. This proves that the Ala28Val mutation in the NadB gene of UTI89 completely impedes de novo synthesis of nicotinamide. In spontaneous prototrophic revertants of UTI89, the nadB gene has a Val28Ala mutation. Both analyses implicate that the nicotinamide auxotrophy of UTI89 is caused by a single Ala28Val mutation in NadB. We showed that the same mutation is also present in other NAD auxotrophic E. coli O18 strains. No significant differences were observed between the virulence of isogenic NAD auxotrophic and prototrophic strains in the murine ascending urinary tract infection model. Considering these data, we applied the nadB locus as a neutral site for DNA insertions in the bacterial chromosome. We successfully restored the parental phenotype of a fimH mutant by inserting fimH, with a synthetic em7 promoter, into the nadB gene. This neutral insertion site is of significance for further research on the pathogenicity of UPEC.


Assuntos
Mutagênese Insercional , Niacinamida/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Substituição de Aminoácidos/genética , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Teste de Complementação Genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ácido Quinolínico/metabolismo , Análise de Sequência de DNA , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação
3.
BMC Res Notes ; 4: 213, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21696605

RESUMO

BACKGROUND: A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. FINDINGS: The procedure was modified by using longer homologous regions (85 bp and 500-600 bp), to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A) it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp) homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. CONCLUSIONS: The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

4.
Microbiology (Reading) ; 155(Pt 2): 468-476, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19202095

RESUMO

Surface exposure of antigens on bacterial cells can be critical for eliciting an effective antibody response. Therefore, we investigated the cellular localization of the fimbrial F17a-G receptor-binding domain, fused to the translocator domain of the AIDA-I autotransporter. Synthesis of the fusion protein, under the control of the L-arabinose-inducible PBAD promoter, was shown to permeabilize Escherichia coli K-12 and Salmonella enterica serovar Typhimurium cells. The presence of permeable cells interfered with several methods that are typically used to determine surface exposure of proteins, such as protease treatment and whole-cell ELISA. Double immunofluorescence microscopy, using a second antibody directed against beta-galactosidase, a bacterial protein expressed in the cytoplasm, allowed the simultaneous detection of antigen expression and permeability in individual cells.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adesinas Bacterianas/genética , Adesinas de Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Viabilidade Microbiana , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
5.
J Mol Biol ; 335(5): 1227-40, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14729339

RESUMO

The crystal structure of a Man/Glc-specific lectin from the seeds of the bloodwood tree (Pterocarpus angolensis), a leguminous plant from central Africa, has been determined in complex with mannose and five manno-oligosaccharides. The lectin contains a classical mannose-specificity loop, but its metal-binding loop resembles that of lectins of unrelated specificity from Ulex europaeus and Maackia amurensis. As a consequence, the interactions with mannose in the primary binding site are conserved, but details of carbohydrate-binding outside the primary binding site differ from those seen in the equivalent carbohydrate complexes of concanavalin A. These observations explain the differences in their respective fine specificity profiles for oligomannoses. While Man(alpha1-3)Man and Man(alpha1-3)[Man(alpha1-6)]Man bind to PAL in low-energy conformations identical with that of ConA, Man(alpha1-6)Man is required to adopt a different conformation. Man(alpha1-2)Man can bind only in a single binding mode, in sharp contrast to ConA, which creates a higher affinity for this disaccharide by allowing two binding modes.


Assuntos
Manose/metabolismo , Oligossacarídeos/química , Lectinas de Plantas/química , Pterocarpus/química , Sementes/química , Sequência de Aminoácidos , Sítios de Ligação , Concanavalina A/metabolismo , Cristalização , Maackia/química , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Lectinas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
6.
Biochim Biophys Acta ; 1579(2-3): 196-202, 2002 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-12427556

RESUMO

The plaque-forming VT2-encoding lambdoid bacteriophage varphi297 was isolated from a Belgian clinical Escherichia coli O157:H7 isolate. PCR walking, starting from the int gene of phage varphi297, demonstrated that the varphi297 prophage integrated in the yecE gene of a lysogenic E. coli K12 strain. This integration site, in E. coli K12 and in the original clinical O157:H7 isolate, was confirmed by PCR using primers flanking this site. The excisionase protein of phage varphi297 is identical to the excisionase of VT1-encoding phage VT1-Sakai, while the integrases, which are 82% identical, show significant sequence divergence in the central and C-terminal region. This can explain the different integration sites of both prophages. The activity of the integrase was proven by its ability to mediate the integration of a suicide plasmid, carrying the attachment site of varphi297, at the appropriate position in the E. coli chromosome.


Assuntos
Bacteriófagos/genética , Escherichia coli O157/genética , Toxina Shiga II/genética , Proteínas Virais , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA Nucleotidiltransferases/genética , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/virologia , Evolução Molecular , Humanos , Integrases/genética , Lisogenia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prófagos/genética , Alinhamento de Sequência , Toxina Shiga II/química , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...